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seamless quadrotor localiΩation 
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J˧eʳ Pi˗˗eΖ Տ Fi˧˗a Cḁ̥˧ʳʳՏ Paͣʳ NeΈb̥ͣΖ   
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T̥a˗̓fe̥ ʳeḁ˗ʇ˗ɪ ̛ʇ̛eʳʇ˗e̓ f˧̥ ̓ʫa͔eb˧ḁdʇ˗ɪ ̓ʫʇʳʳ̓ 
A ˗˧΄eʳ ʇ˗͔e̥ac͔ʇ΄e ̓Ζ͔̓eː f˧̥ ̓e̥΄ʇce ɴͣːa˗˧ʇd ̥˧b˧͔̓ 
Mͣ̓cͣʳ˧̓ʫeʳe͔aʳ ː˧deʳʳʇ˗ɪ a˗d ɴͣːa˗˧ʇd c˧˗͔̥˧ʳ 
A˗ aʳɪ˧̥ʇ͔ɴː f˧̥ ͔̥aʇ˗ʇ˗ɪ AI ̓˧cce̥ ̥˧b˧͔̓ 
A ΄ʇ̓ͣaʳԫa͔͔e˗͔ʇ˧˗ԫba̓ed ̥a̛ʇd a˗d effʇcʇe˗͔ ʳʇɪɴ͔Έeʇɪɴ͔ CNN f˧̥ ˧bʣec͔ ̓˧̥͔ʇ˗ɪ 
A˗ ʇː̛̥˧΄ed Kaʳːa˗ fʇʳ͔e̥ f˧̥ ̡ͣad̥˧͔˧̥ ʳ˧caʳʇΩa͔ʇ˧˗ 
A ̛̥ecʇ̓e ʳ˧caʳʇΩa͔ʇ˧˗ ːe͔ɴ˧d f˧̥ Έʇ̥eʳe̓̓ ̛˧Έe̥ ͔̥a˗̓fe̥ ͔˧ eʳec͔̥ʇc ΄eɴʇcʳe̓
Ac͔ʇ΄e ͔̥ʇɪɪe̥ʇ˗ɪ c˧˗͔̥˧ʳ ˧f ̛˗eͣːa͔ʇc ̥eɴabʇʳʇ͔a͔ʇ˧˗ ɪʳ˧΄e̓
A˗ ʇː̛̥˧΄ed ͔̥a˗̓fe̥ ʳeḁ˗ʇ˗ɪ ːe͔ɴ˧d f˧̥ dʇaɪ˗˧̓ʇ˗ɪ ɴeḁʇ˗ɪ ʳ˧̓̓ 
DΖ˗aːʇc ː˧deʳʳʇ˗ɪ ͔˧ ʇː̛̥˧΄e ͔ɴe ː˧΄eːe˗͔̓ ˧f ̡ͣad̛̥ͣed ̥˧b˧͔
A ͔̓ͣdΖ ʇ˗͔˧ ͔ɴe ʇː̛ac͔ ˧f ae͔̓ɴe͔ʇc̓ ˧˗ ͔̥͔ͣ̓ʇ˗ɪ ̥˧b˧͔̓
A ɴͣːa˗ԫʳʇʫe Έaʳʫʇ˗ɪ c˧˗͔̥˧ʳ f̥aːeΈ˧̥ʫ f˧̥ a cɴʇʳdԫ̓ʇΩed ̥˧b˧͔

Ad΄ance̓ in C˧m̛͔ͣa͔i˧nal Leḁning f˧̥ R˧b˧͔ic̓ ɥɄǹ͔̥ͣɄ̓ ̓ɄʳɄȧ͔Ʉȳ ̛ǹ̛Ʉ̥̓ ̛̥Ʉ̓Ʉ˗͔Ʉȳ ǹ͔ ͔ɴɄ
Ӳ͔ɴ I˗͔Ʉ̥˗ǹ͔ʇ˧˗ǹʳ C˧˗ɥɄ̥Ʉ˗ȧɄ ˧˗ R˧Ƞ˧͔ I˗͔ɄʳʳʇɪɄ˗ȧɄ TɄȧɴ˗˧ʳ˧ɪΖ ǹ˗ȳ A̛̛ʳʇȧǹ͔ʇ˧˗̓ ԕRʇTA ӪӨӪӨԖՐ 

Tɴʇ̓ C˧˗fe̥e˗ce C˧ʳʳec͔ʇ˧˗Տ ̛ͣbʳʇ̓ɴed ʇ˗ Pee̥J Comp͔ͣe̥ ScienceՏ ʇ̓ c˧˗ce̥˗ed Έʇ͔ɴ a˗
ʇː̛˧̥͔a˗͔ ḁea ͔ɴa͔ ɴa̓ ̥ece˗͔ʳΖ a͔͔̥ac͔ed ͔ɴe a͔͔e˗͔ʇ˧˗ ˧f b˧͔ɴ R˧b˧͔ʇc̓ a˗d Ḁ͔ʇfʇcʇaʳ I˗͔eʳʳʇɪe˗ce
̥e̓eḁcɴe̥̓Փ de΄eʳ˧̛ʇ˗ɪ ʇ˗͔eʳʳʇɪe˗͔ ̥˧b˧͔ʇc ̓Ζ͔̓eː̓ ͔ɴa͔ ḁe ca̛abʳe ˧f ːaʫʇ˗ɪ decʇ̓ʇ˧˗̓ a˗d
ac͔ʇ˗ɪ a͔ͣ˧˗˧ː˧ͣ̓ʳΖ ʇ˗ ̥eaʳ a˗d ͣ˗̛̥edʇc͔abʳe e˗΄ʇ̥˧˗ːe˗͔̓Տ ͔˧ acc˧ː̛ʳʇ̓ɴ ͔a̓ʫ̓ a˗d a̓̓ʇ͔̓
ɴͣːa˗̓ ac̥˧̓̓ ΄ḁʇ˧ͣ̓ d˧ːaʇ˗̓ Έʇ͔ɴʇ˗ ̓˧cʇe͔ΖՐ 

We de΄eʳ˧̛ed ͔ɴʇ̓ ̛̓ecʇaʳ ʇ̓̓ͣe ḁ˧ͣ˗d ͔ɴe ͔ɴeːe ˧f C˧ː̛͔ͣa͔ʇ˧˗aʳ Leḁ˗ʇ˗ɪ ͔˧ ɴʇɪɴʳʇɪɴ͔ ͔ɴe
c̥ʇ͔ʇcaʳ ʇː̛˧̥͔a˗ce ˧f ͔ɴʇ̓ ͔˧̛ʇc f˧̥ ˧˗ɪ˧ʇ˗ɪ ̛̥˧ɪ̥e̓̓ ʇ˗ ̥˧b˧͔ʇc̓ a˗d ḁ͔ʇfʇcʇaʳ ʇ˗͔eʳʳʇɪe˗ceՐ 

Tɴʇ̓ C˧˗fe̥e˗ce C˧ʳʳec͔ʇ˧˗ ʇ̓ f˧̥ːed ˧f ͔Έeʳ΄e ̛ͣbʳʇ̓ɴed ḁ͔ʇcʳe̓ ͔ɴa͔ ɴa΄e eΑaːʇ˗ed ͔ɴʇ̓ ʇ̓̓ͣe
f̥˧ː ΄ḁʇ˧ͣ̓ ̛e̛̥̓ec͔ʇ΄e̓Փ

We ɴ˧̛e ͔ɴe ̥˧b˧͔ʇc̓ a˗d ḁ͔ʇfʇcʇaʳ ʇ˗͔eʳʳʇɪe˗ce c˧ːːͣ˗ʇ͔ʇe̓ Έʇʳʳ fʇ˗d ͔ɴʇ̓ ̛̓ecʇaʳ ʇ̓̓ͣe ͔˧ be a˗
ʇ˗f˧̥ːa͔ʇ΄e a˗d ͣ̓efͣʳ c˧ʳʳec͔ʇ˧˗ ˧f ḁ͔ʇcʳe̓Ր

We Έ˧ͣʳd ʳʇʫe ͔˧ ͔ɴa˗ʫ ͔ɴe Pee̥J C˧ː̛͔ͣe̥ Scʇe˗ce edʇ͔˧̥ʇaʳ b˧ḁd a˗d a ʳ˧˗ɪ ʳʇ͔̓ ˧f a˗˧˗Ζː˧ͣ̓
̥e΄ʇeΈe̥̓ f˧̥ ͔ɴeʇ̥ ͔ɴ˧ͣɪɴ͔fͣʳ ̓ͣɪɪe͔̓ʇ˧˗̓ a˗d c˧˗͔̥̓ͣc͔ʇ΄e c̥ʇ͔ʇcʇ̓ː̓Ր Tɴe c˧˗͔̥ʇb͔ͣʇ˧˗̓ ˧f ͔ɴe
ʇ˗dʇ΄ʇdͣaʳ ḁ͔ʇcʳe̓ a˗d ˧f ͔ɴe C˧˗fe̥e˗ce C˧ʳʳec͔ʇ˧˗ ʇ˗ ʇ͔̓ e˗͔ʇ̥e͔Ζ ḁe ͔̥̓˧˗ɪe̥ ͔ɴa˗ʫ̓ ͔˧ ͔ɴeʇ̥
ɴḁd Έ˧̥ʫՐ 

C˧ʳʳɄȧ͔ʇ˧˗ Eȳʇ͔˧̥̓Փ Pe˗ɪcɴe˗ɪ Lʇͣ ԕaԖՏ HΖͣ˗ MΖͣ˗ɪ ԕbԖՏ Yͣ D˧˗ɪ ԕcԖՏ Gͣʇbʇ˗ Bʇa˗ ԕdԖՏ Jͣ˗Έe˗
Zɴ˧˗ɪ ԕeԖՏ E̓Ζʇ˗ CɴeΈ ԕfԖ

a Depḁ͔men͔ of Comp͔ͣe̥ ScienceՏ Uni΄e̥̓i͔Ζ of Yo̥kՏ UKՕ
b Ko̥ea Ad΄anced In͔̓i͔͔ͣe of Science and TechnologΖ ԕKAISTԖՏ So͔ͣh Ko̥eaՕ 
c School of Ci΄il and Mechanical Enginee̥ingՏ C̥͔ͣin Uni΄e̥̓i͔ΖՏ A͔̥ͣ̓aliaՕ 
d In͔̓i͔͔ͣe of A͔ͣoma͔ionՏ Chine̓e AcademΖ of Science̓Տ ChinaՕ 
e Facͣl͔Ζ of Science and TechnologΖՏ Uni΄e̥̓i͔Ζ of MacaoՏ ChinaՕ 
f EUREKA Robo͔ic̓ LabՏ Cḁdiff Me͔̥opoli͔an Uni΄e̥̓i͔ΖՏ UK
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ABSTRACT
The portable and inexpensive hand rehabilitation robot has become a practical
rehabilitation device for patients with hand dysfunction. A pneumatic rehabilitation
glove with an active trigger control system is proposed, which is based on surface
electromyography (sEMG) signals. It can trigger the hand movement based on the
patient’s hand movement trend, which may improve the enthusiasm and efficiency of
patient training. Firstly, analysis of sEMG sensor installation position on human’s arm
and signal acquisition process were carried out. Then, according to the statistical law,
three optimal eigenvalues of sEMGsignalswere selected as the follow-upneural network
classification input. Using the back propagation (BP) neural network, the classifier
of hand movement is established. Moreover, the mapping relationship between hand
sEMG signals and hand actions is built by training and testing. Different patients choose
the same optimal eigenvalues, and the calculation formula of eigenvalues’ amplitude
is unique. Due to the differences among individuals, the weights and thresholds of
each node in the BP neural network model corresponding to different patients are
not the same. Therefore, the BP neural network model library is established, and the
corresponding network is called for operation when different patients are trained.
Finally, based on sEMG signal trigger, the pneumatic glove training control algorithm
was proposed. The combination of the trigger signal waveform and the motion signal
waveform indicates that the pneumatic rehabilitation glove is triggered to drive the
patient’s hand movement. Preliminary tests have confirmed that the accuracy rate of
trend recognition for hand movement is about 90%. In the future, clinical trials of
patients will be conducted to prove the effectiveness of this system.

Subjects Human-Computer Interaction, Artificial Intelligence, Robotics
Keywords Hand rehabilitation, Pneumatic rehabilitation gloves, Surface electromyography,
Active trigger control system, Back propagation neural network

INTRODUCTION
Approximately two million people suffer from stroke every year in China, and about
three-fourths of stroke patients have hand movement disorders (Heung et al., 2020).
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Moreover, the other neurological disorders, such as multiple sclerosis or motor neuron
disease, also show abnormal hand movements. Patients with inflexible hands are unable
to complete various actions in daily life due to lack of muscle strength and fine control
of the fingers. Rehabilitation robot is playing an increasingly important role in training
patients instead of rehabilitation physicians, which can improve the motor function of
inflexible hands and reduce the possibility of permanent disabilities (Gaia et al., 2020;
Yurkewich et al., 2020; Lemerle, Nozaki & Ohnishi, 2018). At present, the popular hand
rehabilitation robots at present can be divided into finger exoskeleton rehabilitation robot
(Agarwal et al., 2015; Nycz et al., 2016), flexible rehabilitation robot gloves (FRRG) and
end traction finger rehabilitation robot (Bentzvi & Ma, 2014; Wu et al., 2010). Compared
with other types of hand rehabilitation robots, FRRG has some advantages, including good
flexibility, small size, large working space, light weight, safety and reliability (Heung et
al., 2019; Mahdi, Charu & Muthu, 2019; Matthew, Jeong & Raye, 2019). Polygerinos et al.
(2015) developed the rehabilitation gloves, which include a molded elastomer chamber and
a fiber reinforcement that produces specific bending, twisting and extending trajectories
under fluid pressure to match and support the different ranges of motion of a single finger.
Wang, et al. proposed a pair of antagonistic pneumatic muscles which are very similar in
action to human muscles, can be used for hand passive training (Wang et al., 2020a;Wang
et al., 2020b). A new kind soft pneumatic glove with five segmented PneuNets bending
actuators is made of elastomer, whose actuator driving the corresponding finger to bend
(Wang, Fei & Pang, 2019). A new portable and inexpensive pneumatic rehabilitation glove
is proposed in this paper.

Rehabilitation training, which is based on limbmovement trend of patients, can improve
the efficiency of recover (Pichiorri et al., 2015). Themethods for trend recognition of human
limbmovement include biomechanical signal (Sangwoo et al., 2018) and bioelectrical signal
(Leonardis et al., 2015). However, due to the structure and wearing characteristics of FRRG,
it is expensive to install biomechanical sensors on the gloves, which make it difficult to use
for patients with financial problems in their families. For patients with finger dysfunction
caused by stroke, biomechanical sensors are not suitable for them and not easy to collect the
biomechanical signals of their hands (Leonardo et al., 2018). On the contrary, bioelectrical
signals are generated beforemovement, and the corresponding relationship between signals
and movement can be obtained by collecting and decoding bioelectrical signals of human
body, which provides an extremely important means for the prediction of human limb
movement trend. There aremanymaturemethods of limbmovement intention recognition
based on bioelectrical signals, including electrocorticogram (ECoG), electroencephalogram
(EEG), magnetoencephalo-graphy (MEG) and electromyography (EMG). Due to the high
cost of collecting ECoG, EEG or MEG signals, EMG is chosen as the bioelectrical signal for
hand movement trend recognition in this paper.

EMG signals can be divided into two types; surface electromyography (sEMG) and
needle in electromyography (nEMG). Compared with nEMG, sEMG has the advantages
of noninvasive and simple operation. The signal collected by sEMG sensor is the sum of
the potential generated by muscle activity in the area where the electrode is located on
the skin surface. Selecting the appropriate muscle group of arm is very important and
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different muscle groups have different effects, which is reflected in the amplitude change
of sEMG signals (Dai & Hu, 2020). The larger the amplitude change, the more conducive
to the identification of hand movement trend. The control based on bioelectrical signal
from patient muscle, mainly includes sEMG trigger control (Meng et al., 2014) and sEMG
continuous control (Song et al., 2008). In this paper, a new pneumatic glove trigger control
system for paralysis patients’ hand is developed. The trigger control is used to identify
the movement trend of the patients, and then the assisting to complete the rehabilitation
training is realized.

Construction of pneumatic rehabilitation glove trigger control system
based on sEMG
The pneumatic rehabilitation glove trigger control system based on sEMG consists of one
pneumatic gloves, an air pump, a Stm32f103 microprocessor equipped with an ARM chip,
two electric relays, a Myoware sEMG sensor, two-position three-way solenoid valves and a
host computer as shown in Fig. 1. The pneumatic rehabilitation gloves can well wrap the
patients’ fingers, palms and hand back. Air pump provides power for pneumatic gloves.
sEMG sensors are used to collect patient’s sEMG signals. The Stm32f103 microprocessor
equipped with an ARM chip is used to process the original sEMG signals collected by sEMG
sensors. It is also used as the driver of air pump and transmits the processed sEMG signals
to the host computer. The host computer is developed with QT software (Cross-platform
software development framework for the development of apps and devices, developed by
QT Group) as the development environment. It judges the movement trend of the hand
by analyzing the collected sEMG signals. According to the movement trend of the hand, it
also sends related instructions to the air pump driver. Then the air pump driver controls
pneumatic rehabilitation gloves to flex and extend. The above hardware platform can be
divided into an acquisition layer, a decision-making layer, a driving layer and an execution
layer as shown in Fig. 1. The RS232-USB (RS232 to USB) serial port is adopted between
the acquisition layer and the decision layer, the decision-making layer and the drive layer.
The high and low level control of the IO port pins is used between the drive layer and
the execution layer. The host computer uses the QSerialPort component (Function pack
of QT) to receive the sEMG signals through the RS232-USB serial port, and stores the
received sEMG data in an Excel table to facilitate the subsequent static data processing.

Processing and selection of optimal eigenvalues of sEMG signals
Acquisition and processing of the sEMG Signals
In order to facilitate the collection of sEMG signals, the muscle group on the forearm is
selected as the collection object. The muscle groups of the forearm mainly include palmar
longus, flexor carpi radialis, brachioradialis, teres pronatorus, extensor carpi radialis longus,
extensor digitorum and flexor digitorum superficialis. The flexor carpi radialis is a flexor
wrist muscle located on the inner side of the forearm. It starts from the medial epicondyle
of the humerus and the olecranon, and ends at the proximal end of the second metacarpal
bone. The flexor superficialis is mainly responsible for flexing the metacarpophalangeal
joint and proximal interphalangeal joint of the 2nd to 5th fingers. The extensor digitorum
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Figure 1 The composition of the trigger control system of the pneumatic rehabilitation gloves based
on the sEMG.

Full-size DOI: 10.7717/peerjcs.448/fig-1

Figure 2 Flowchart of original sEMG signal acquisition and processing.
Full-size DOI: 10.7717/peerjcs.448/fig-2

can extend the metacarpophalangeal joint of the four fingers. The original sEMG signals are
collected by dual-channel sEMG sensors. Each sEMG sensor has two detection electrodes
and one reference electrode. The detection electrode is attached to the central part of the
muscle belly of the target muscle, and the reference electrode is attached to the muscle not
participating in the test exercise. The processed sEMG signal amplitude varies from 0 to
3.3V and the original sEMG signal acquisition and processing process is shown in Fig. 2.
Three healthy volunteers were recruited in this experiment with the informed consents
of all volunteers and the Ethical Approval (No. [2020]LLSP(12), Ethics Committee of
Faculty of Mechanical Engineering & Mechanics, Ningbo University). Volunteer 1: Male,
weight 64 kg, height 175 cm, 24 years old; Volunteer 2: Male, weight 73 kg, height 177
cm, 26 years old; Volunteer 3: Male, weight 75 kg, height 180 cm, 20 years old. Using
sEMG sensors and Stm32f103 microprocessor, the original sEMG signals are digitally
filtered, amplified, rectified and smoothed (Lyu et al., 2020; Shi et al., 2020). After repeated
experiments and comparing the amplitudes of the sEMG signals of different muscle groups
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Figure 3 Dual-channel human handmotion sEMGwaveforms in 90s.
Full-size DOI: 10.7717/peerjcs.448/fig-3

collected during the same hand action, the extensor digitorum and flexor digitorum
superficialis are finally selected as the muscle groups for sEMG signal collection. Volunteer
1 uses dual-channel sEMG sensors to collect the actual sEMG signals during the flexion and
extension movement of his hand, as shown in Fig. 3. The total signal collection duration
is about 90 s, of which the sEMG signal curves do not fluctuate much in the first 3 s, as
the volunteer is in a state of inactivity. During the movement of the subject’s hand, the
corresponding to the hand sEMG signal curves have changed, and the waveform in the
figure appears to be convex. By observing the sEMG signals of the two channels, it can be
seen that the signals of the two channels fluctuate synchronously when the subject hand is
moving, but there are certain differences in the waveforms of each channel.

Selection of optimal eigenvalues of the sEMG signals
Figure 4 shows the obtained eigenvalues of sEMG sensor’s channel 1. It is necessary to
use the law of statistics to find the accurate physical quantities that best represent the
essence of the surface EMG signal, that is, the extracting eigenvalues of sEMG signals. The
original sEMG signal after amplification, rectification and rectification integration loses
a lot of frequency domain characteristics of the original signal. By directly analyzing and
processing the sEMG signal in the time domain, it will be intuitive and accurate. In the time
domain, the sEMG signal can be approximated as a Gaussian distribution. At present, the
most commonly used time domain eigenvalues of the signal are the root mean square value
(RMS), peak value (PV ), mean value (MAV ), wavelength average (WAV ), form factor (FF)
andWillison amplitude (WAMP) (Liu & Cheng, 2018). The number of eigenvalues selected
is positively correlated with the accuracy of the information representation contained in
the sEMG signals, but too many eigenvalues will affect the speed of the computer to make
decisions, which is manifested in the deterioration of the follow ability of the pneumatic
gloves to the patient’s intention. On the contrary, if the selected number of eigenvalues
of the sEMG signal is too small, the pneumatic rehabilitation glove control system cannot
accurately recognize the patient’s movement intention. xi represents the amplitude of the
signal, and n represents the extracted step size. First, N (N = 30) groups of sEMG signals
are extracted to form sEMG samples with empirical steps n= 100, n= 150, n= 200 in
the continuously collected sEMG signals respectively as W1, W2, and W3. And then the
above-mentioned 6 eigenvalues with each segment length as the unit to form an eigenvalue
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Figure 4 Sample of sEMG eigenvalues.
Full-size DOI: 10.7717/peerjcs.448/fig-4

sample Ei (6×N ) is calculated, where i= 1,2,3 corresponds to the sEMG samples W1, W2,
W3, respectively.
The patient’s hand movement trend will be expressed as fluctuations in sEMG signals.

The eigenvalues of the signals reflect the nature of the signals over a period of time, so
the fluctuation of the sEMG will also be specifically reflected in the fluctuation of sEMG
eigen-values. According to prior knowledge, it can be known that the greater the degree
of dispersion of eigenvalues, the more conducive the neural network to the recognition of
the movement trend based on eigenvalues. Based on the six eigenvalues, three eigenvalues
with a large degree of dispersion will be selected as the parameters of the next action
classification, participating in the training and testing of the neural network for intention
recognition. Since a single dispersion index is not sufficient to fully characterize the degree
of dispersion of the signals, 4 dispersion indicators will be used to process the 6 eigenvalues
that have been obtained, namely range (R), interquartile range (Q), and variance (V ) and
fourth-order center distance (K ).
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Range is the difference between the maximum and minimum values between data. The
greater the range, the greater the degree of dispersion, namely:

R=max(si)−min(si). (1)

The interquartile range represents the range of the middle half of the data. The larger the
interval, the greater the degree of dispersion. Arrange a set of data in ascending order. The
number in the x% position is represented by Px . The lower quartile and upper quartile are
P8 and P23 respectively, namely:

Q= P23−P8. (2)

Variance describes the degree of dispersion of data mathematical expectation, that is, the
greater the variance, the greater the degree of dispersion, namely:

V = 1
N

N∑

i=1

(

si−
1
N

N∑

i=1

si

)2

. (3)

The fourth-order center distance is a cumulative numerical statistics reflecting the
distribution characteristics of randomvariables. The larger the fourth-order center distance,
the smaller the degree of dispersion, namely:

K =
1
N
∑N

i=1

(
|si|− 1

N
∑N

i=1 si
)4

(
1
N
∑N

i=1 s
2
i

)2 . (4)

In Eqs. (1) and (4), Si represents the data amplitude and N represents the data length. The
process of determining the optimal eigenvalue is shown in Fig. 5.

By observing the sorting results of the data dispersion degree in Table 1, three eigenvalues
with the largest dispersion degree are selected, which areWAMP, PV and RMS. For further
verification, the dispersion index of E2 and E3 are calculated by the same method, and a
comprehensive ranking is performed according to the magnitude of the dispersion index,
as shown in Tables 2 and 3.

Research on hand movement trend recognition based on BP neural
network
Using the collected sEMG signals to achieve the purpose of identifying the patient’s finger
movement trend is the main problem in the design of the pattern recognition classifier.
The back propagation (BP) neural network model was chosen to construct the motion
recognition classifier, as the BP neural network model has good self-learning, nonlinear
mapping and adaptation, generalization and fault tolerance (Wang et al., 2020a; Wang et
al., 2020b). It could be an ideal movement trend pattern recognition tool.

Construction of BP neural network classifier
BP neural network is an adaptive nonlinear dynamic system composed of a large number
of interconnected neurons. It can learn and store the mapping relationship of multiple
input–output modes without describing specific mathematical equations in advance. The
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Figure 5 The flow chart of finding the optimal eigenvalues.
Full-size DOI: 10.7717/peerjcs.448/fig-5

Table 1 E1 dispersion index magnitude ordering.

Values
index

MAV PV RMS WAMP FF WAV Dispersion
index order

V 12.1356 33.2040 12.6915 66.0600 0.0003 0.0283 4, 2, 3, 1, 6, 5
R 13.3068 24.6861 14.0063 31.0000 0.0781 0.7957 4, 2, 3, 1, 6, 5
Q 1.0042 3.0947 1.3145 5.0000 0.0070 0.1064 4, 2, 3, 1, 6, 5
K 0.0020 0.0034 0.0019 0.1177 0.0002 0.0189 3, 4, 2, 6, 1, 5

Table 2 E2 dispersion index magnitude ordering.

Values
index

MAV PV RMS WAMP FF WAV Dispersion
index order

V 10.8368 30.9901 11.1964 108.8024 0.0002 0.0216 4, 2, 3, 1, 6, 5
R 12.6620 24.0479 13.1707 40.0000 0.0578 0.7017 4, 2, 3, 1, 6, 5
Q 1.0578 5.4918 1.3927 10.0000 0.0078 0.0910 4, 2, 3, 1, 6, 5
K 0.0016 0.0024 0.0014 0.0705 0.0003 0.0134 3, 4, 2, 6, 1, 5

quality of neural network classifiers is closely related to the number of neural network
layers, the number of nodes in each layer, the transfer function of the hidden layer, and the
learning algorithm. The training algorithm flow chart of constructing BP neural network
under QT software development environment is shown in Fig. 6.
The number of BP neural layers is selected as 3 layers, namely, the input layer (I), the

hidden layer (H) and the output layer (O). This is because Robert Hecht-Nielson proved
that a three-layer neural network can complete the mapping of any n-dimensional input
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Table 3 E3 dispersion index magnitude ordering.

Values
index

MAV PV RMS WAMP FF WAV Dispersion
index order

V 10.6075 27.7494 11.0703 164.1194 0.0002 0.0191 4, 2, 3, 1, 6, 5
R 11.1623 18.9855 11.2990 51.0000 0.0487 0.6539 4, 2, 3, 1, 6, 5
Q 3.4440 4.6856 4.1505 16.0000 0.0130 0.1500 4, 2, 3, 1, 6, 5
W 0.0014 0.0015 0.0013 0.0524 0.0004 0.0121 3, 4, 2, 6, 1, 5

Figure 6 Flowchart of training algorithm for BP network.
Full-size DOI: 10.7717/peerjcs.448/fig-6

and m-dimensional output, so in order to simplify the calculation, a three-layer network
is adapted (Hecht-Nielsen, 1992).

Hidden layer transfer function:

yi =
(xi−MinValue+A)

MaxValue−MinValue+A
(5)

Transfer function of the output layer:

yk = xk × (MaxValue−MinValue+A)−A+MinValue (6)

Logsig activation function is used:

yj =
1

1+e−xi
(7)

Levenberg-Marquart (L-M) learning algorithm is used:

!ω =
(
J T J +µI

)−1gJT e (8)

In Eqs. (5) and (6),MinValue is the minimum value of the input layer value;MaxValue is
the maximum value of the input layer value; constant A reprevents the denominator from
being zero; xi represents the eigenvalue extracted from the sEMG signals; yi represents the
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Table 4 Action coding.

Action type Action encoding

Action 1
No action 0

normalized feature value of the input layer; xk represents the output value of the hidden
layer, and yk represents the final output value of the output layer. In Eq. (7), xi represents
the sum of the product of the output value and the weight of each neuron in the previous
network, yj represents the output of the j neuron in the current layer network. In Eq. (8), J
represents the Jacobian matrix of the derivative of weights from network error, e represents
the error vector, µisan adaptive constant, which is greater than 0. The input layer is a 6×1
vector composed of the optimal eigenvalues of the 2-channel sEMG signals, so the number
of nodes in the input layer is 6, set the number of nodes in the output layer to 1, and use
the output result of the output layer to determine the triggered action. The action code is
built as in Table 4.

The number of hidden layer nodes is determined by the following empirical formula
(Sheela & Deepa, 2013):

n1 =
√
n+m+a (9)

where, n is the number of input nodes;m is the number of output nodes; n1 is the number
of hidden nodes; a is a constant between 1 and 10.

The number of hidden nodes gradually increases, and the training error of the neural
network is observed during this process. As the number of hidden layer nodes increases,
the training error gradually decreases, but after a certain number of nodes, the test error
will fluctuate greatly. Therefore, considering the trend of training and test error changes,
the number of hidden layer nodes is finally determined to be 12.

Training and testing of BP neural network
In order to realize the mapping function of the input matrix and the output matrix, the
BP neural network needs to be trained. The feedback mechanism of BP neural network
includes two parts. One is that the BP neural network produces prediction results. The
other is to compare the prediction results with sample results, and then correct the neuron
error until the error meets the specified requirements or reaches the specified number
of training sessions. 160 sets of data are used as training samples to train the BP neural
network as shown in Table 5. Each set of data contains the input and target output of the BP
neural network. The input is the optimal eigenvalues of the sEMG signals collected by the
two channels of the sEMG sensors, and the output is the code value of the corresponding
action.

Before training the BP neural network, the training samples need to be randomly
divided into two types at a ratio of 3:1, as training samples and test samples separately.
After the BP neural network uses the training sample to complete each iteration, it is
judged whether the average error value meets the accuracy requirements (e < 0.01). If the
accuracy requirements are met, the training is completed. Otherwise, the prediction results
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Table 5 Part training sample data.

Channel Eigenvalue Sample1 Sample 2 Sample 3 Sample 4 Sample 5

WAMP 32 0 24 5 22
RMS 21.3020 10.4378 24.7514 19.4136 22.7687Channel 1
PV 36.8406 11.8223 39.2490 29.2650 36.4782
WAMP 45 0 46 0 32
RMS 26.6754 16.1020 26.8007 17.8136 24.4910Channel 2
PV 41.85703 16.8022 41.1995 20.2604 37.9465
Action encoding 1 0 1 0 1

are compared with the sample target results, and then start neural Meta-feedback learning,
repeat the above steps until reaching the specified number of training times or meet the
accuracy requirements to complete the training.

Considering that BP neural network is prone to over training and lack of generalization
ability, the training samples input into the neural network training algorithm are divided
into three kinds of samples: train samples, validation samples and test samples. In each
epoch of training, the errors between the results of three samples and the target results are
tested. When the error of validation samples does not decrease in six successive epochs,
the training of BP neural network is stopped to prevent over fitting, which is caused by
overtraining of BP neural network. It can be seen from Fig. 7 that the total number of
epochs of BP neural network is 116. After 110 epoch of BP neural network, the error of
train samples, the error of test samples and the error of validation samples no longer have a
downward trend, or their downward trend is not obvious. The best validation performance
is 6.293e−6. Therefore, the training of BP neural network is finished at the 116th epoch.
The threshold w is set 0.98, and the trained BP neural network is used to classify and
recognize patient actions, the recognition result is shown in Fig. 8. Common classification
performance measures are Precision (PRE), Recall (REC), and the harmonized average of
the two (F1).

According to Table 6, the calculation formula of Pre, Rec and F1:

Pre = TP
TP+FP

(10)

Rec = TP
TP+FN

(11)

F1 = 2
PR ·REC
PR+REC

(12)

From Eqs. (10)–(12), Pre = 1, Rec = 0.818, F1 = 0.8998.

Active trigger control strategy for pneumatic gloves
The software processing algorithm of the control system mainly includes a two-channel
optimal eigenvalue amplitude calculation and a BP neural network action recognition
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Figure 7 Best validation performance.
Full-size DOI: 10.7717/peerjcs.448/fig-7

Figure 8 BP network motion classification results.
Full-size DOI: 10.7717/peerjcs.448/fig-8

calculation. Among them, the same optimal eigenvalue is selected for different patients,
and the eigenvalue amplitude calculation formula is unique. However, due to differences
between individuals, the weights and thresholds of the nodes in the BP neural network
model corresponding to different patients are not the same, so the BP neural networkmodel
library needs to be established in the actual application process. Different patients call their
corresponding BP neural network models during training. When a patient conducts active
training based on sEMG signals for the first time, he needs to collect sEMG signals under
the guidance of a physician, and complete the training of the BP neural network, and store
the required neural network in the BP neural network model library. The corresponding
database will be called during a training session. The algorithm flow of active trigger control
strategy for pneumatic rehabilitation gloves based on sEMG signals is shown in Fig. 9.

RESULTS
Now three male volunteers apply the above sEMG signal control strategy to identify the
volunteer’s hand movement trend to trigger the pneumatic rehabilitation gloves. Three
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Table 6 Part training sample data.

Predection result / real Result Positive(+) Negative(-) Total

Positive(+) 18 (TP) 4 (FN) 22 (TP+FN)
Negative(-) 0 (FP) 22 (TN) 22 (FP+TN)
Total 18 (TP+FP) 26 (FN+TN)

Figure 9 Algorithm flow chart of pneumatic glove trigger based on sEMG signals.
Full-size DOI: 10.7717/peerjcs.448/fig-9

volunteers are required to complete the triggering of the pneumatic rehabilitation gloves
six times within 100s, and the time from triggering to the completion of the training of
a single pneumatic rehabilitation gloves should exceed 10s. The accuracy of the control
system can be checked by completing the specified number of experiments within the
specified time. The time to complete a single experiment is set to exceed 10s in order to
make the extracted sEMG signal more intuitive. When the three volunteers realized the
trigger control of the pneumatic gloves, the waveform diagram of the sEMG signal is shown
in Figs. 10, 11 and 12. The surface EMG signal waveform without fluctuation in the figures
indicates that the pneumatic rehabilitation gloves have not been triggered. At this time,
the output of the control algorithm is 0. However, the combination of the trigger signal
waveform and the motion signal waveform indicates that the pneumatic rehabilitation
gloves are triggered to drive the patient’s hand muscle movement. At this time, the output
of the control algorithm is 1. All of the movement trends of the three volunteers were
correctly identified, which indicates that the active triggering training based on sEMG
signals may have universal applicability.
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Figure 10 Volunteer 1′s sEMG signal waveform when he attended pneumatic rehabilitation gloves
triggering control.

Full-size DOI: 10.7717/peerjcs.448/fig-10

Figure 11 Volunteer 2′s sEMG signal waveform when he attended pneumatic rehabilitation gloves
triggering control.

Full-size DOI: 10.7717/peerjcs.448/fig-11

Figure 12 Waveforms of dual-channel sEMG signals when three volunteers attend pneumatic rehabil-
itation gloves triggering control.

Full-size DOI: 10.7717/peerjcs.448/fig-12

DISCUSSION
In order to realize active triggering training becoming possible in home rehabilitation,
EMG is chosen as the bioelectrical signal for hand movement trend recognition, replacing
the other high cost of collecting ECoG, EEG or MEG signals. The rehabilitation gloves’
hardware platform can be divided into an acquisition layer, a decision-making layer, a
driving layer and an execution layer.

The control systemuses the BPneural network as a classifier for patient’s handmovement
trend recognition, and extracts the characteristic values of sEMG signals in the time domain:
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MAV, PV, WAMP, RMS, MS and MWL, and then through the degree of dispersion index
R, Q, V and K, the optimal eigenvalues of the sEMG signals are selected. By observing the
sorting results of the data dispersion degree in Table 1, three eigenvalues with the largest
dispersion degree are selected, which areWAMP, PV and RMS. By observing Tables 2 and
3, it can be seen that the most discrete eigenvalues extracted by samples W2 and W3 are
WAMP, PV and RMS, which are the same as the optimal eigenvalues corresponding to the
W1 sample. By comparing Tables 1, 2, and 3, it can be seen that the order of the dispersion
degree of each eigenvalues corresponding to different sub-samples is roughly the same.
The magnitude of the dispersion index of the selected optimal eigenvalue is significantly
higher than other eigenvalues. So it is reasonable to comprehensively select the optimal
eigenvalues in the time domain asWAMP, PV and RMS.

WAMP, PV and RMS are used as the input values of the BP neural network. On the basis
of the BP neural network which is used to establish the classifier of hand movement, the
mapping relationship between hand sEMG signals and hand actions is finally completed by
training and testing. From the Fig. 8, when the actual test result is greater than w, the test
result is equal to the action target result; when the test result is less than w, the test result is
equal to the non-action target result. The accuracy of trend recognition is determined by
judging whether the test result is equal to the corresponding target test result. A total of 44
judgments are made in the Fig. 8, only 4 of which are wrong as shown by the triangle. Based
on this, it can be considered that the correctness rate of BP judgment is about 90%. Based
on Fig. 7, the train correctness rate of BP judgment is about 99.997%. Judging the main
reason for the distortion is closely related to factors such as the quality of the electrode
paste, the state of the skin on the surface of the human body, and the changes in the muscle
group during the sEMG acquisition process.

The pneumatic rehabilitation glove training control algorithm, based on sEMG signal,
was proposed. By observing the sEMG signal waveforms of three volunteers, it can be found
that when the BP neural network monitors the hand’s movement trend, the pneumatic
gloves will be triggered to drive the fingers to perform rehabilitation training. The difference
in the amplitude and duration of the trigger signal of different volunteers in Figs. 10, 11 and
12 is related to the volunteer’s different physical quality, the duration and intensity of hand
movement trend. Three male healthy volunteers used the control system to achieve the
experimental results of the trigger experiment on pneumatic rehabilitation gloves, which
preliminarily confirmed that the system has a high accuracy rate for hand movement trend
recognition, and it may be useful in patient active hand training.

In the future, more healthy volunteers will be recruited to participate in this experiment.
The generality and accuracy of this trigger control system for the recognition of different
people’s hand movement trend are tested in a larger range. Then stroke patients will be
recruited to participate in the experiment to test. Comparison between the rehabilitation
effect of traditional pneumatic rehabilitation robot and the ones with the trigger control
system on stroke patients will be conducted. At last, the feasibility of applying the device
to finger paralysis caused by different diseases will be considered. Meanwhile, we will also
consider the effects of spasm, complete plegia and other factors on the accuracy of the
trigger system.
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CONCLUSIONS
An active trigger control system for pneumatic rehabilitation gloves, based on sEMG signals,
is developed, which could achieve immediate rehabilitation movement trend to help the
patient complete active hand rehabilitation training. Firstly, acquisition and processing of
the sEMG signals from the human is researched, and three optimal eigenvalues of sEMG
signals were selected as the follow-up neural network classification input. Then, based
on BP neural network, the neural network classifier of hand movement is constructed.
Moreover, the mapping relationship between hand sEMG signals and hand actions is
built by training and testing. Based on the individual differences, the corresponding BP
neural network model database of different people was established. At last, the pneumatic
glove training control algorithm was proposed. Preliminary experiment shows that the
combination of the trigger signal waveform and the motion signal waveform indicates
that the pneumatic rehabilitation glove is triggered to drive the patient’s hand movement.
The device has high accuracy rate of trend recognition for hand movement. The above
research could produce important scientific value for the development of robot technology
and rehabilitation theory, provide theoretical basis and technical support for the control
strategy of new hand rehabilitation robots.
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ABSTRACT
As the necessity of wireless charging to support the popularization of electric vehicles
(EVs) emerges, the development of a wireless power transfer (WPT) system for EV
wireless charging is rapidly progressing. The WPT system requires alignment between
the transmitter coils installed on the parking lot floor and the receiver coils in the
vehicle. To automatically align the two sets of coils, theWPT system needs a localization
technology that can precisely estimate the vehicle’s pose in real time. This paper
proposes a novel short-range precise localization method based on ultrawideband
(UWB) modules for application to WPT systems. The UWBmodule is widely used as a
localization sensor because it has a high accuracy while using low power. In this paper,
theminimumnumber of UWBmodules consisting of twoUWB anchors and twoUWB
tags that can determine the vehicle’s pose is derived through mathematical analysis.
The proposed localization algorithm determines the vehicle’s initial pose by globally
optimizing the collected UWB distance measurements and estimates the vehicle’s pose
by fusing the vehicle’s wheel odometry data and the UWB distance measurements. To
verify the performance of the proposed UWB-based localization method, we perform
various simulations and real vehicle-based experiments.

Subjects Algorithms and Analysis of Algorithms, Autonomous Systems, Robotics
Keywords Electric vehicles, Localization, Ultrawideband (UWB), Vehicle pose estimation,
Wireless power transfer systems

INTRODUCTION
The global electric vehicle (EV) market is growing rapidly due to the strengthening of
international environmental regulations on vehicle emissions. The technical limitation
that should be overcome to accelerate the popularization of EVs is the poor mileage.
To this end, the capacity of the battery should be increased, but the current technology
does not reach the mileage of internal combustion engine vehicles with a single charge.
In addition, the charging time is too long. To compensate for this problem, a wireless
power transfer (WPT) system that can easily charge EVs in a parking lot space has been
proposed (El-Shahat et al., 2019; Liang et al., 2020; Machura, Santis & Li, 2020; Panchal,
Stegen & Lu, 2018). WhenWPT systems are installed in parking lots, charging can be easily
performed frequently without building a separate charging station, thereby compensating
for problems caused by battery capacity limitations. In addition, when combined with an
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autonomous parking system, an advanced driver assistance system (ADAS), the use of EVs
becomes easier because these vehicles can park and charge themselves. TheWPT consists of
power-transmitting coils on the parking lot floor and power-receiving coils for the car, and
to be charged, the EV must precisely recognize the car location within the parking area and
align the two sets of coils to centimeter-level accuracy (Rozman et al., 2019). Therefore, for
the WPT system to be combined with an autonomous parking system, precise localization
technology is required in the parking area (Tian et al., 2020; Shin et al., 2019).

Vehicle localization technologies have been developed with different sensors and
different methods for indoor or outdoor environments. Localization in outdoor
environments uses the Global Positioning System (GPS) and vision sensors with high
definition (HD) maps. Localization in indoor environments uses a vision sensor or
lidar with prebuilt feature maps or grid maps, as GPS signals are unavailable in these
environments. It is thus difficult to apply these conventional localization methods to the
WPT system because a map cannot be constructed for all indoor environments.

Recently, many studies have been conducted to utilize an ultrawideband (UWB) distance
sensor for vehicle localization technology (Stoll et al., 2017; Tiemann et al., 2016; Kukolev
et al., 2016; Alarifi et al., 2016). In Stoll et al. (2017), extended Kalman filter (EKF)-based
vehicle localization using one UWB tag mounted on the vehicle and multiple UWB
anchors placed in an outdoor parking space was proposed. The method requires many
UWB anchors to be installed in the outdoor space to enhance the accuracy of vehicle
localization. This method shows that the average position error is approximately 0.23 m
when seven anchors are used. In Tiemann et al. (2016), a UWB-based precise localization
method for application to WPT was proposed. The method is based on an EKF using
UWB distance measurements from one UWB tag on the vehicle and two UWB anchors
placed in the corners of a parking slot. When the vehicle moves straightforward and
approaches the parking slot, the localization accuracy is approximately 0.1 m near the
anchors, demonstrating the possibility of applying UWB technology to precise localization
for the WPT. However, since only one tag is used to estimate the vehicle’s state, only the
2D position can be estimated, and the vehicle’s heading cannot be estimated. In addition,
since the localization method uses only UWB distance measurements, it is very vulnerable
to UWB measurement noise. In Kukolev et al. (2016), a localization method based on one
UWB anchor in a parking lot and two UWB tags on a vehicle was proposed. The method
presented in Kukolev et al. (2016) can estimate the position while the vehicle is stationary.
However, there is a limitation that an area where position estimation is not possible exists
depending on the heading angle of the vehicle.

The UWB sensor can also be used for the localization of various objects, such as
mobile robots (Chen et al., 2020; Shi et al., 2020), flying drones (Wang, Marelli & Fu, 2021;
González-Castaño et al., 2021; Hyun et al., 2019), and users (Zhang et al., 2019; Knobloch,
2017), because it can provide precise distance measurements based on the time-of-flight
(TOF) principle at short-range regions while using low power. In addition, since the UWB
distance sensor is inexpensive, the UWB-based localization system can advantageously be
implemented at an economical cost, even though multiple UWB sensor modules are used.
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This paper proposes a novel short-range precise localization method based on a dual-
anchor and dual-tag (DADT) UWB system that can be applied to WPT systems. The
proposed DADT UWB-based localization method uses two UWB anchors placed in the
parking area and two UWB tags mounted on the vehicle. When the vehicle approaches
the parking slot where the WPT is located, the UWB anchors start to communicate with
the tags, and the vehicle’s pose, i.e., position and heading angle, is initialized by processing
the UWB distance measurement data. Then, the wheel odometry information and UWB
distance measurements are fused based on a particle filter framework to continuously
estimate the pose from the initial vehicle pose. The goal of this paper is to make a precise
pose estimation so that the final parking position of the vehicle has an error of less than
0.1 m, which is required for alignment between the power transmitter and receiver coils
of the WPT. To verify the performance of the proposed DADT UWB-based localization
method, we perform various simulations and experiments with an actual vehicle.

The preliminary results of this paper were presented in Lee (2020). In the preliminary
results, the theoretical analysis of the minimum number of UWB modules and their
placement was not performed sufficiently. Compared with the results in Lee (2020),
the contributions of this paper can be summarized as follows. This paper provides the
detailed DADT UWB localization system with rigorous theoretical analysis. It is shown
mathematically that the proposed DADT method can uniquely determine the pose of the
vehicle with only two anchors and two tags. Additionally, we analyze the observability of
the proposed DADT method based on the Fisher information matrix (FIM). From the
analysis, it is confirmed that the DADT UWB system is the minimal combination of UWB
anchors and tags satisfying the condition for the DADTUWB localization system to be fully
observable. In addition, more detailed simulation and experimental results are provided to
show the effectiveness of the propose method.

The rest of this paper is organized as follows: we introduce the WPT system for EVs and
describe the proposed DADT UWB localization method. To verify the performance of the
proposed method, simulation results with various scenarios and experimental results with
a real vehicle are presented. Finally, a conclusion is presented.

LOCALIZATION FOR WIRELESS POWER TRANSFER (WPT)
SYSTEMS
The basic working principle of WPT for EVs is as follows (González-Castaño et al., 2021).
The WPT consists of electric power transmitter coils and electric power receiver coils,
as shown in Fig. 1. Power transmitter coils are installed on the floor of the parking lot,
and power receiver coils are mounted underneath the vehicle. When the transmitter coil
and the receiver coil are kept close to each other while maintaining a certain distance,
electric power is transmitted to the receiver coils, and electric energy can be used to charge
the battery. The alignment of the transmitter and receiver coils is significant for the high
performance and efficiency of WPT.

Localization technologies that can be applied in parking lot environments have been
developed based on mono cameras (Hu et al., 2019; Panev et al., 2019; Yu et al., 2020),
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Figure 1 Wireless power transfer (WPT) for electric vehicles (EVs).When the power transmitter and
receiver coils are kept close to each other, electric energy can be used to charge the battery. The alignment
of the two coils is significant for the high performance and efficiency of the WPT.

Full-size DOI: 10.7717/peerjcs.567/fig-1

Figure 2 Dual-anchor and dual-tag (DADT) ultrawideband (UWB)-based localization system. Two
UWB anchors are placed on both corners of the parking slot and two UWB tags are mounted on the ve-
hicle. The observability of the vehicle’s pose estimated by the proposed DADT UWB system is analyzed
based on the Fisher information matrix.

Full-size DOI: 10.7717/peerjcs.567/fig-2

depth cameras (Zhao et al., 2020), lidar (Tao et al., 2018), and radio frequency (RF)
fingerprinting of WiFi signals (Gao, He & Li, 2018), but they still have some limitations.
Most camera-based localization technologies are based on parking line recognition.
However, parking lines are usually not standardized and may not even be drawn. These
methods are also sensitive to lighting changes at night and do not operate well in dark
indoor parking lots. Lidar is useful for finding vacant parking spaces, but it is difficult to
estimate the relative position from the transmitting coil because it is difficult for lidar to
recognize the position of the transmitting coil.

The use of UWB sensors can overcome the limitations of cameras and lidar sensors. The
proposed DADT localization method only needs to know the positions of two anchors and
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the transmitting coil installed in the parking slot. Thus, it does not require an inconvenient
process of building a high-precision map with cameras or lidar sensors. As the UWB sensor
is based on RF signals, it is unaffected by changes in lighting and robust against dynamic
obstacles such as vehicles and pedestrians. In addition, if a pair of UWB sensors has a
clear line of sight, the distance between them can be precisely measured with an error of
approximately 0.05 m- 0.1 m. Due to the economics of UWB sensors, many automotive
makers have plans to use UWB sensors in vehicles soon. Therefore, it is possible to
implement a precise localization applicable to WPT for EVs with economical cost.

PROPOSED ULTRAWIDEBAND (UWB)-BASED
LOCALIZATION
Dual-Anchor and dual-tag (DADT) UWB localization and observability
analysis
This section describes a novel dual-anchor and dual-tag (DADT) UWB-based localization
method that can precisely estimate the pose of a vehicle near a parking area. The key
idea of the proposed DADT UWB-based localization is shown in Fig. 2. Two anchors are
installed on the charging station, and two tags are mounted on the vehicle. The two tags
should be placed so that the pose of the vehicle is always observable with only the distance
measurements of the DADT UWB system. The location of the UWB anchors should be
known in advance. Thus, the two anchors are placed on both corners of the parking slot so
that the location of the anchor can be easily identified.

To show the effectiveness of the proposed DADT UWB sensor system, the condition in
which the vehicle’s pose can be uniquely determined by the DADT UWB sensor system
is analytically derived. Then, observability analysis based on FIM is performed on the
proposed DADT UWB sensor system.

Existence and Uniqueness Solution to DADT UWB localization
We denote the vehicle pose state vector at a time step k by xk = [xk,yk,θk]T , the two UWB
anchor position vectors by a1 =

[
a1x ,a1y

]T and a2 =
[
a2x ,a2y

]T , and the two UWB tag
position vectors by t1 =

[
t1x ,t1y

]T and t2 =
[
t2x ,t2y

]T . For simplicity, let us assume that the
two anchors are placed at a1 = [a0,0]T and a2 = [−a0,0]T , as shown in Fig. 2. The position
vectors of the two tags can then be represented in the global frame (XG,YG) as

t1 =
[
t1x
t1y

]

=
[
xk −d0sinθk

yk +d0cosθk

]

, (1)

t2 =
[
t2x
t2y

]

=
[
xk +d0sinθk

yk −d0cosθk

]

. (2)
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The measurement model of the DADT UWB system can then be derived as

h(xt ,a0,d0) =





√
(xk −d0sinθk −a0)2+ (yk +d0cosθk)2√
(xk +d0sinθk −a0)2+ (yk −d0cosθk)2√
(xk −d0sinθk +a0)2+ (yk +d0cosθk)2√
(xk +d0sinθk +a0)2+ (yk −d0cosθk)2




, (3)

and Eq. (3) can be represented as

z211 = (xk −d0sinθk −a0)2+ (yk +d0cosθk)2 (4a)

z212 = (xk +d0sinθk −a0)2+ (yk −d0cosθk)2 (4b)

z221 = (xk −d0sinθk +a0)2+ (yk +d0cosθk)2 (4c)

z222 = (xk +d0sinθk +a0)2+ (yk −d0cosθk)2, (4d)

where zij is the distance measurement value by the ith anchor and jth tag. The vehicle
pose as determined by the DADT UWB system can be found by solving Eqs. (4a)–(4d) for
xk =

[
xk,yk,θk

]T . From Eqs. (4a) and (4c), xk and yk can be uniquely determined by

xk = d0sinθk + 1
4a0

(
z221−z211

)
(5a)

yk = −d0cosθk +
√

z211−
[

1
4a0

(
z221−z211

)
−a0

]2
, (5b)

under the condition that

yk +d0cosθk > 0. (6)

In a similar manner, using Eqs. (4b) and (4d), xk and yk have another equivalent form as
follows:

xk = −d0sinθk + 1
4a0

(
z222−z212

)
(7a)

yk = d0cosθk +
√

z212−
[

1
4a0

(
z222−z212

)
−a0

]2
, (7b)

under the condition that

yk −d0cosθk > 0. (8)

The two conditions Eqs. (6) and (8) can be satisfied the two tags are on the YG > 0 region.
Subtracting Eqs. (7a) from (5a) and rearranging with respect to sinθk gives

sinθk = 1
8a0d0

(
z211−z212−z221+z222

)
. (9)

From Eqs. (5b) and (7b), cosθk can be expressed by
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cosθk = 1
2d0





√

z211−
[

1
4a0

(
z221−z211

)
−a0

]2
−
√

z212−
[

1
4a0

(
z222−z212

)
−a0

]2


. (10)

Using Eqs. (9) and (10), θk can be found as

θk = arctan




1
4a0

z211−z212−z221+z222√
z211−

[
1
4a0

(
z221−z211

)
−a0

]2
−
√
z212−

[
1
4a0

(
z222−z212

)
−a0

]2



. (11)

Therefore, the vehicle pose xk =
[
xk,yk,θk

]T can be uniquely determined by Eqs. (7a), (7b)
and Eq. (11) under the condition that yk > d0.

Observation analysis based on the Fisher information matrix (FIM)
The uncertainty of the pose of the vehicle estimated by UWB distance measurements is
determined by the geometric distribution of the anchors fixed on the parking lot and the
tags mounted on the vehicle. To estimate the amount of uncertainty about the vehicle
pose estimated by the proposed DADT UWB system, FIM-based observability analysis is
performed as follows. The FIM can be defined as (Lee et al., 2015)

F !HTW−1H (12)

where H is the Jacobian of h(xt ,a0,d0) in Eq. (3) with respect to the vehicle state xk and
W is a covariance matrix of the UWB measurement noise. The sufficient and necessary
condition for the DADT UWB localization system to be fully observable is that the FIM
defined in Eq. (12) should be positive definite. The positive definiteness of the FIM is
equivalent to the full column rank of the Jacobian H. Therefore, it can be found that the
DADT UWB localization system is fully observable from the UWB distance measurements
if and only if H has a full column rank. The Jacobian H can be computed as

H= ∂h(xk,a0,d0)
∂xk

=





1
m11

(xk −a0−d0sinθk)
1

m12
(xk −a0+d0sinθk)

1
m11

(
yk +d0cosθk

) 1
m12

(
yk −d0cosθk

)

− d0
m11

(
(xk −a0)cosθk +yk sinθ

) d0
m12

(
(xk −a0)cosθk +yk sinθ

)

1
m21

(xk +a0−d0sinθk)
1

m22
(xk +a0+d0sinθk)

1
m21

(
yk +d0cosθk

) 1
m22

(
yk −d0cosθk

)

− d0
m21

(
(xk +a0)cosθk +yk sinθ

) d0
m22

(
(xk +a0)cosθk +yk sinθ

)




. (13)
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Figure 3. Numerical distribution of the determinant of the Fisher information matrix in (12) around the
UWB anchors placed at a1 = [1, 0]T and a2 = [−1, 0]T with different vehicle’s heading angles for every
position. (A) θk = 0 deg or 180 deg; (B) θk = 30 deg or 210 deg; (C) θk = 60 deg or 240 deg; (D)
θk = 90 deg or 270 deg.

The Jacobian presented in (13) can also be represented in a reduced row echelon form using the Gaussian
elimination process as follows:





1 0 0 −m11(yk−d cosθk)((xk+a)cosθk+yk sinθk)
m22(yk+d cosθk)((xk−a)cosθk+ysinθk)

0 1 0 m12((xk+a)cosθk+ysinθk)
m22((xk−a)cosθk+ysinθk)

0 0 1 m21(yk−d cosθk)
m22(yk+d cosθk)



 . (14)

As seen in (14), the column rank is 3, which is the full rank.139

The determinant value of the FIM represents the amount of Fisher information that can be observed for140

vehicle pose state variables; i.e., as the determinant of the FIM increases, the vehicle pose can be estimated141

with higher accuracy. Fig. 3 shows the numerical distribution of the determinant of the FIM around the142

UWB anchors placed at a1 = [1, 0]T and a2 = [−1, 0]T , when the vehicle heading is θk = 0 deg, 30 deg,143

60 deg, and 90 deg for every position. In Fig. 3, the covariance matrix W in (12) is assumed to be an144

identity matrix in order to compare the determinant value depending only on the positions. As shown in145

Fig. 2, when the vehicle approaches the parking slot, the heading angle θk is 90 deg for back-in parking146

and 270 deg for front-end parking. By comparing Fig. 3, it can be seen that when the heading angle is147

90 deg or 270 deg, the determinant of the FIM has the largest distribution. This means that for anchors148

placed at both corners of the parking lot slot, installing the two tags in a direction perpendicular to the149

vehicle’s moving direction maximizes the amount of Fisher information under the assumption that back-in150

parking (θk = 90 deg) or front-end parking (θk = 270 deg) is performed.151
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Figure 3 Numerical distribution of the determinant of the Fisher informationmatrix in Eq. (12)
around the UWB anchors placed at a1 = [1,0]T and a2 = [−1,0]T with different vehicle’s heading
angles for every position. (A) θk = 0 deg or 180 deg; (B) θk = 30 deg or 210 deg; (C) θk = 60 deg or 240
deg; (D) θk = 90 deg or 270 deg.
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The Jacobian presented in Eq. (13) can also be represented in a reduced row echelon form
using the Gaussian elimination process as follows:




1 0 0
−m11(yk −d cosθk)((xk +a)cosθk +yk sinθk)
m22(yk +d cosθk)

(
(xk −a)cosθk +y sinθk

)

0 1 0
m12((xk +a)cosθk +y sinθk)
m22((xk −a)cosθk +y sinθk)

0 0 1
m21(yk −d cosθk)
m22(yk +d cosθk)





. (14)

As seen in Eq. (14), the column rank is 3, which is the full rank.
The determinant value of the FIM represents the amount of Fisher information that can

be observed for vehicle pose state variables; i.e., as the determinant of the FIM increases,
the vehicle pose can be estimated with higher accuracy. Figure 3 shows the numerical
distribution of the determinant of the FIM around the UWB anchors placed at a1 = [1,0]T

and a2 = [−1,0]T , when the vehicle heading is θk = 0 deg, 30 deg, 60 deg, and 90 deg for
every position. In Fig. 3, the covariance matrix W in Eq. (12) is assumed to be an identity
matrix in order to compare the determinant value depending only on the positions. As
shown in Fig. 2, when the vehicle approaches the parking slot, the heading angle θk is 90
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Figure 4 Flowchart of the proposed DADTUWB localization algorithm. In the first step, the vehicle’s
pose is initialized by globally optimizing the UWB distance measurements. In the second step, based on
the initialized vehicle pose, the wheel odometry and UWB distance measurement collected as the vehicle
moves are fused to estimate the pose of the vehicle in real time.

Full-size DOI: 10.7717/peerjcs.567/fig-4

deg for back-in parking and 270 deg for front-end parking. By comparing Fig. 3, it can be
seen that when the heading angle is 90 deg or 270 deg, the determinant of the FIM has the
largest distribution. This means that for anchors placed at both corners of the parking lot
slot, installing the two tags in a direction perpendicular to the vehicle’s moving direction
maximizes the amount of Fisher information under the assumption that back-in parking
(θk = 90 deg) or front-end parking (θk = 270 deg) is performed.

Vehicle pose estimation based on the DADT UWB system
The proposed DADT UWB localization algorithm consists of two major steps, as shown
in Fig. 4. In the first step, when the EV approaches the parking area where the UWB tag
and anchor can communicate, distance measurements between UWB anchors and tags are
collected. Subsequently, the pose of the EV is initialized through global optimization of
the UWB measurements. In the second step, based on the initialized vehicle pose, wheel
odometry and UWB distance data collected as the vehicle moves are fused to estimate the
pose of the vehicle in real time. The details are given in the following subsections.
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Vehicle pose initialization by globally optimizing UWB measurements
The purpose of this step is to quickly find the approximate initial pose of the EV using
only UWB distance measurements under the assumption that no prior information about
the EV’s pose is available. From the mathematical analysis of the proposed DADT UWB
system, the EV pose can always be uniquely determined by the DADT UWB system in the
area of y > d0. Therefore, it is possible to predict the sensor measurement value from the
measurement model as formulated in Eq. (3) and determine the initial pose of the vehicle
through global optimization between the predicted value and the actual measurement
value.

We propose a particle swarmoptimization (PSO) (Kennedy, Eberhart & Shi, 2001)-based
global optimization algorithm that can quickly search for suboptimal solutions to find the
initial pose. Each particle in PSO is considered a potential solution, i.e., a vehicle pose state
vector, and searches for a given solution space. The position of each particle is iteratively
updated based on the experience of the particle and its neighbors and converges toward
the optimal solution quickly.

The PSO-based vehicle pose initialization method is as follows. When a vehicle
approaches a parking area where communication between UWB anchors and tags is
possible, UWBdistancemeasurements between eachUWB tag and anchor pair are sampled.
When a certain number of measurements is collected, the average value is estimated by
removing outliers. The error function J for global optimization is defined as follows.

J = [h(xt ,a0,d0)−zk]T [h(xt ,a0,d0)−zk], (15)

where zk is a measurement vector. For the region where y > d0, the PSO finds the initial
vehicle pose x0 =

[
x0,y0,θ0

]T whose error function J value is less than or equal to a
specific threshold ε. The threshold is determined by considering the variance of UWB
measurements.

Vehicle pose tracking by fusing odometry and UWB measurements
To estimate the vehicle’s pose precisely as the vehicle moves, the UWB distance
measurements and wheel odometry data are fused through a particle filter. The method of
estimating the vehicle’s pose through the particle filter is shown in the right block of Fig. 4,
and the details of each part are as follows.

In particle filter-based localization, a group of particles represents the probability
distribution of vehicle states, with each particle x[m]

k representing a possible state, where
[m] indicates a particle index. When the initial pose state of the EV is determined by
the PSO, the particles are initialized to have a Gaussian distribution. The mean of the
distribution is set to the initial pose state determined by the PSO.

The motion model of the vehicle is

xk = f (xk−1,uk)+eu, (16)

where uk is a control input vector and eu is normally distributed process noise with
zero mean. Given the current vehicle pose xk and the positions of the anchors fixed at
a1 = [a0,0]T and a2 = [−a0,0]T , the observation model of the DADT UWB system can be
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Figure 5 Four simulation tests. The vehicle starts from four different positions and moves along the path
for front-end parking or back-in parking.

Full-size DOI: 10.7717/peerjcs.567/fig-5

written as

zk = h(xk,a0,d0)+ev (17)

where ev is normally distributed Gaussian noise with zero mean.
The vehicle pose x[m]

k is predicted by taking the wheel odometry into consideration,
which is denoted by x[m]

k ∼ p
(
xk |x[m]

1:k−1,uk
)
. The importance weight is computed by

(Grisetti, Stachniss & Burgard, 2007)

ω
[m]
k = 1√

2πQ
exp

[
−1
2

(
zk − ẑ[m]

k

)T
(Qk)

−1
(
zk − ẑ[m]

k

)]
, (18)

where ẑ[m]
k is a predicted measurement and Qk is the covariance of the anchors’ positions.

In the process of particle filtering, the importance weight of some particles can gradually
become low, and particles with lower importance weights have little effect in estimating
the vehicle pose states. To prevent this effect, the particles are resampled in proportion to
the weight of each particle. The number of effective particles given by

Neff = 1
∑M

m=1

(
ω

[m]
k

)2 , (19)

whereM is the total number of particles. When the number of effective particle is less than
50% of the total number of particles, the weights of all particles are uniformly reset after
resampling particles.

SIMULATION AND EXPERIMENTAL RESULTS
Simulation results
To verify the performance of the proposed DADT UWB localization method, we perform
the following simulations: (1) Initialize the vehicle’s pose by globally optimizing the error
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Table 1 Initial pose estimation results by the Levenberg–Marquardt and the proposed globally opti-
mizing DADTUWBmeasurements for the four selected poses (unit: m, rad).

True pose Levenberg–Marquardt Proposed DADT

xGT = [
x,y,θ

]T Estimated Pose E Estimated Pose E
Test 1 [15,9,π]T [14.83,9.26,1.11]T 2.05 [14.99,9.01,3.14]T 1.42E–02
Test 2 [15,6,π]T [14.88,6.30,0.79]T 2.37 [15.01,5.98,3.14]T 2.24E–02
Test 3 [−15,9,0]T [−14.74,9.40,−0.03]T 0.48 [−14.97,9.05,0.00]T 5.83E–02
Test 4 [−15,6,0]T [−14.69,6.69,−0.04]T 0.76 [−14.99,6.02,0.00]T 2.24E–02

function defined in Eq. (15); (2) estimate the vehicle’s pose by fusing wheel odometry
and UWB measurements. Figure 5 shows the simulation scenario. The vehicle starts
from four different positions and moves along the path for front-end parking or back-
in parking. Considering the actual dimensions of the vehicle and the parking space
environment, the distance between the UWB tags mounted on the vehicle is set to 1.36 m,
i.e., d0 = 0.68 and the two UWB anchors are placed at a1 = [1,0]T and a2 = [−1,0]T . The
wheel odometry noise and UWB measurement noises are assumed to be sampled from the
normal distributions denoted by eu ∼N

(
0,σ 2

u
)
and vu ∼N

(
0,σ 2

v
)
where σu = 0.35 m/s

and σv = 0.10 m.
Table 1 shows the initial pose estimation results by the proposed global optimizing

UWB measurements for the four selected poses. To show the effectiveness of the proposed
vehicle’s pose initialization method, the results of the Levenberg–Marquardt method
(Moré, 1978), which is a widely used method of optimization of the least square problem,
are compared with the results of the proposed DADT method. The pose error E between
the estimated initial pose x0 and the ground truth pose xGT defined by

E = ‖x0−xGT‖. (20)

Since the Levenberg–Marquardt method is a local optimization method, it has a limitation
in that it cannot find the initial position when it converges to a local minimum. As seen in
Table 1, the Levenberg–Marquardt method fails to find the vehicle’s initial pose. However,
the proposed initial pose estimation method can precisely find the initial pose for all
the tests. These results are consistent with the mathematical analysis of the DADT UWB
localization system.

Figures 6–9 show the results of estimating the vehicle’s pose continuously from the initial
pose through the fusion of the vehicle’s odometry data and theUWBdistancemeasurements
under the particle filter framework with a fixed number of particles,M = 100. As seen from
the results, the error of the odometry increases as the vehicle moves, whereas the trajectories
estimated by the proposed DADT method match the ground truth trajectories in all four
cases. Figure 10 shows boxplots for each test, including the mean, minimum, maximum,
and standard deviation of the errors. Table 2 shows the numerical values corresponding to
the boxplots. The results show that the proposed DADT method keeps the mean error of
the vehicle’s position under 0.1 m.
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Figure 6 Simulation results of Test 1. The vehicle starts from its initial pose x0 = [15,9,π]T and moves
along the path for front-end parking.
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Figure 7 Simulation results of Test 2. The vehicle starts from its initial pose x0 = [15,6,π]T and moves
along the path for back-in parking.
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Figure 8 Simulation results of Test 3. The vehicle starts from its initial pose x0 = [−15,9,0]T and moves
along the path for front-end parking.
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Figure 9 Simulation results of Test 4. The vehicle starts from its initial pose x0 = [−15,6,0]T and moves
along the path for back-in parking.
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Figure 9. Simulation results of Test 4. The vehicle starts from its initial pose x0 = [−15, 6, 0]T and
moves along the path for back-in parking.

Figure 10. Boxplots of the simulation results.

11/16

Figure 10 Boxplots of the simulation results.
Full-size DOI: 10.7717/peerjcs.567/fig-10

Table 2 Comparison of pose estimation error by odometry and the proposed DADTUWB system
while the vehicle moves. (Unit: m).

Odometry Proposed DADT

Mean Min Max Std Mean Min Max Std

Test 1 0.3396 0.0012 0.8322 0.2613 0.0691 0.0016 0.2831 0.0476
Test 2 0.3555 0.0140 0.6925 0.1414 0.0720 0.0129 0.2220 0.0397
Test 3 0.3930 0.0034 0.7266 0.2362 0.0714 0.0035 0.2075 0.0382
Test 4 0.3831 0.0032 0.5838 0.1525 0.0732 0.0030 0.2344 0.0401

Experimental results
The proposed DADT UWB-based localization method is tested with a real vehicle. The
tests are performed with the UWB modules manufactured by Pozyx (Pozyx, 2021), which
have a maximum measurable distance of 30 m and an update rate of 60 Hz. As shown
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Figure 11 Experimental setup. (A) Two UWB anchors are installed near both corners of the parkingslot.
(B) two UWB tags and DGPS are mounted on the vehicle roof.

Full-size DOI: 10.7717/peerjcs.567/fig-11

Figure 12 Snapshots of the experiment with a real vehicle. The vehicle is performing front-end parking.
Full-size DOI: 10.7717/peerjcs.567/fig-12

in Fig. 11, two UWB tags are mounted on the vehicle roof, and two UWB anchors are
installed near both corners of the parking slot. The UWB anchors are installed at a height
of 1.8 m to maintain line-of-sight communication with the UWB tags mounted on the
vehicle. The positions where the UWB anchors and tags are installed are set to be the same
as in the simulation. To evaluate the error of the proposed method, a differential global
positioning system (DGPS) receivermodule with centimeter-level accuracy is alsomounted
on the vehicle. The proposed localization algorithm is implemented to perform real-time
computation at 10 Hz on an NVIDIA Nano Jetson board (NVIDIA, 2021). Figure 12 shows
snapshots of the experiment with a real vehicle performing front-end parking.

Figures 13–14 show the experimental results with the actual vehicle. As shown in the
experimental results, the error generated by the wheel odometry increases due to the slip of
the wheels when moving along a curved path. However, the proposed DADT UWB-based
method precisely corrects the vehicle’s pose using the UWBdistancemeasurements. Table 3
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Figure 13 Results of Exp. 1. The black dashed-dotted line shows the DGPS trajectory, the red dotted line
shows the odometry trajectory, and the blue solid line shows the proposed DADT UWB-based localization
results.

Full-size DOI: 10.7717/peerjcs.567/fig-13

Table 3 Comparison of the final position estimation error by odometry and the proposed DADT
UWB system with a real vehicle. (unit: m).

XG-axis error YG-axis error Distance error

Odometry 0.4690 0.5826 0.7479Exp. 1
Proposed DADT 0.0493 0.0763 0.0908
Odometry 0.9038 0.1604 0.9179Exp. 2
Proposed DADT 0.0328 0.0031 0.0329

shows that the errors are within 0.1 m at the final parked position. The proposed DADT
UWB-based localization method can be sufficiently applied to WPT.
Through the experiments, the average computation time required to update the vehicle’s
pose at each time instant is estimated while increasing the number of particles from 20 to

Lee (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.567 17/22

https://peerj.com
https://doi.org/10.7717/peerjcs.567/fig-13
http://dx.doi.org/10.7717/peerj-cs.567


-5

 0

 5

 10

 15

 20

 25

 30

 35

-15 -10 -5  0  5  10  15

y 
(m

)

x (m)

Anchor
DGPS

Odometry
Proposed DADT

Figure 14 Results of Exp. 2. The black dashed-dotted line shows the DGPS trajectory, the red dotted line
shows the odometry trajectory, and the blue solid line shows the proposed DADT UWB-based localization
results.

Full-size DOI: 10.7717/peerjcs.567/fig-14

100. Figure 15 shows the average computation time estimated by an NVIDIA Nano Jetson
board. The computation time grows linearly as the number of particles increases. However,
even when 100 particles are used, it can be operated in real time at a rate of 10 Hz.

CONCLUSIONS
This paper proposed a novel short-range precise localization method using a DADT UWB
sensor system for application to a WPT system. An observability analysis of the proposed
DADT UWB sensor system consisting of two anchors and two tags was performed based
on the FIM. The proposed localization algorithm determines the vehicle’s initial pose by
globally optimizing the collected UWB distance measurements and estimates the vehicle’s
pose by fusing the vehicle’s wheel odometry data and the UWB distance measurements.
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Figure 15 Average computation time required to update the vehicle’s pose at each time instant.
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The effectiveness of the proposed method was confirmed through various simulations and
real vehicle-based experiments.
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Neural network assisted Kalman filter for
INS/UWB integrated seamless quadrotor
localization
Shuhui Bi, Liyao Ma, Tao Shen, Yuan Xu and Fukun Li

School of Electrical Engineering, University of Jinan, Jinan, Shandong, China

ABSTRACT
Due to some harsh indoor environments, the signal of the ultra wide band (UWB)
may be lost, which makes the data fusion filter can not work. For overcoming this
problem, the neural network (NN) assisted Kalman filter (KF) for fusing the
UWB and the inertial navigation system (INS) data seamlessly is present in this work.
In this approach, when the UWB data is available, both the UWB and the INS
are able to provide the position information of the quadrotor, and thus, the KF is
used to provide the localization information by the fusion of position difference
between the INS and the UWB, meanwhile, the KF can provide the estimation of the
INS position error, which is able to assist the NN to build the mapping between the
state vector and the measurement vector off-line. The NN can estimate the KF’s
measurement when the UWB data is unavailable. For confirming the effectiveness of
the proposed method, one real test has been done. The test’s results demonstrate that
the proposed NN assisted KF is effective to the fusion of INS and UWB data
seamlessly, which shows obvious improvement of localization accuracy. Compared
with the LS-SVM assisted KF, the proposed NN assisted KF is able to reduce the
localization error by about 54.34%.

Subjects Adaptive and Self-Organizing Systems, Data Science, Robotics
Keywords Neural network assisted Kalman filter, INS/UWB, Quadrotor, Localization

INTRODUCTION
Nowadays, the quadrotor has been widely used in many fields (Xu et al., 2020a; Nguyen &
Hong, 2019; Kou et al., 2018). Consequently, many approaches have been proposed for
the quadrotor (Liang et al., 2019). In order to make the quadrotor have better performance,
the accurate localization scheme, which is the key technology of the quadrotor to
accomplish other tasks, should be investigated (Camci & Kayacan, 2019).

To the localization technologies for the quadrotor, there are many approaches have
been proposed. For instance, a smart quadcopter aircraft navigation system using the
global positioning system (GPS) was designed, which can achieve autonomous flight
control with smooth and stable maneuvering, see Bonny & Abdelsalam (2019). Global
navigation satellite systems (GNSS) intigrating light detection and ranging (LiDAR)
scheme was investigated to achieve the autonomous navigation in forests (Chiella et al.,
2019). The indoor quadrotor localization integrated by inertial navigation system (INS)
and ultra wide band (UWB) was proposed by Xu et al. (2020b). A high-speed autonomous
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quadrotor navigation through visual and inertial paths was proposed (Do, Carrillo-Arce &
Roumeliotis, 2019). Autonomous vision-based micro air vehicle for indoor and outdoor
navigation was investigated in Schmid et al. (2014). It should be emphasized that the basic
idea of the approaches mentioned above is to replace the unavailable positioning
technology with a available one.

In aggregate, the data fusion filter has played an important role in integrated navigation
system (Zhao & Huang, 2020; Wang et al., 2018; Li et al., 2019; Liu, Yu & Shuang, 2019).
Moreover, the Kalman filter (KF) with its improving filters have been proposed for the
data fusion (Liu et al., 2020). For example, the fading cubature Kalman filter (CKF) was
designed to the initial alignment of strapdown inertial navigation system (SINS) (Guo
et al., 2020). The quadrotor state estimation based on CKF was proposed (Benzerrouk,
Nebylov & Salhi, 2016). An improving CKF method was investigated for the the attitude
determination system of missile (Liu et al., 2019). The CKF is used for the GNSS/INS
under GNSS-challenged environment (Cui et al., 2019). An improved square root
unscented Kalman filter was proposed for the localization of the coaxial Quadrotor
(Gośliński et al., 2019). A Kalman filter/expectation maximization (EM) integrated frame
was proposed in Qin et al. (2020). A new approach for enhancing the indoor navigation of
unmanned aerial vehicles (UAVs) with velocity update applied to an extended Kalman
filter (EKF) was investigated by Zahran et al. (2019). It should be pointed out that the
outage of the data fusion filter’s measurement are not considered by the approaches
mentioned above. Meanwhile, in order to ensure that the data fusion filter works, some
artificial intelligence (AI)-based methods have been proposed, which have been used used
in other fields (Zhang et al., 2021, 2020).

In this paper, we propose a neural network (NN) assisted KF, which is able to deal with
the missing data in case of UWB data outage. Neural network is used to build the mapping
between states and observations. The performance is verified with real data. Comparison
shows that the proposed approach outperforms LS-SVM algorithm significantly in
accuracy improvement.

The contributions of this work are listed in the following:

! A new NN assisted KF for fusing the UWB and INS data seamlessly is presented in this
work, which employs the NN to build mapping between states and observations offline
and predict the observations when the UWB is outage.

! Real tests have been done for demonstrating the effectiveness of the proposed approach.

The remainder structure of this article is sketched as follows. The description of INS/
UWB integrated seamless quadrotor localization scheme is given in “INS/UWB Integrated
Seamless Quadrotor Localization Scheme”. “Kalman Flilter” and “The Scheme of the NN”
investigated the KF and the NN method for the localization scheme of INS/UWB
integrated seamless quadrotor. The test is done in the “Test” section. Finally, conclusions
are drawn in the “Conclusion” section.
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INS/UWB INTEGRATED SEAMLESS QUADROTOR
LOCALIZATION SCHEME
In this section, the INS/UWB integrated seamless quadrotor localization scheme will be
designed in two cases. The integrated seamless scheme proposed in this work are listed in
the following:

! When the UWB measurements are available, the data fusion scheme is shown in Fig. 1.
In this situation, the INS and UWB localization technologies measure the target
quadrotor’s position Po(I) and Po(U) respectively. Then, the Kalman filter (KF) estimates
the position Po by fusing the Po(I) and Po(U).

! Using the outputs and the measurements of the KF when the UWB measurements are
available, the NN works in the training stage, it builds the mapping between the KF’s
measurement δPot, t ∈ [1, +∞) and the data filter’s state vector x̂tjt"1; t 2 ½1;þ∞Þ after
normal flight of the quadrotor. Here, the t is the time index. It should be pointed out that
both the δPot, t ∈ [1, ∞) and the x̂tjt"1; t 2 ½1;∞Þ are collected when the KF works
normally, and the building process of the mapping is off-line.

! When the UWBmeasurements are not available, the data fusion scheme can be designed
as Fig. 2. In this situation, the UWB is unable to provide the Po(U) due to the outage of
the UWB. Thus, the KF is unable to work. In this situation, the NN is employed to
rebuild the measurement of the KF. It works in prediction stage, which is utilized to
provide the estimated position error δPo by using the mapping built in the above stage
and the x̂tjt"1. Then, the δPo is used as the measurement of the KF, which makes the KF
can work when the UWB measurement is outage.

Figure 1 The data fusion scheme when the UWB measurements are available.
Full-size DOI: 10.7717/peerj-cs.630/fig-1
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KALMAN FILTER
Based on the seamless integrated scheme, the KF used in this work will be introduced in
this section. The state equation of KF used in this work is listed in Eq. (1).

dPotjt"1
dVtjt"1

! "

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
xtjt"1

¼ I3'3 dt ( I3'3

03'3 I3'3

! "

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

dPot"1

dVt"1

! "

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
xt"1

þxt"1 (1)

where the time index is denoted as t, δt means the sample time, dPot ¼ dxt; dyt; dzt½ )T

means the position error vector at the time index t, here, the dxt; dyt; dztð Þ means the
position error in the east, north, and up direction respectively, dVt ¼ dVxt; dVyt; dVzt½ )T

means the velocity error vector at the time index t, here, the dVxt; dVyt; dVztð Þ means the
velocity error in the east, north, and up direction respectively, ωt−1 ∼ N(0, Q) is the system
noise and Q is its covariance.

The measurement equation of KF used in this work is listed in Eq. (2).

x Ið Þ
t " x Uð Þ

t

y Ið Þ
t " y Uð Þ

t

z Ið Þ
t " z Uð Þ

t

2

64

3

75

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Yt

¼ I3'3 03'3½ )|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
H

xtjt"1 þ tt"1; (2)

Figure 2 The data fusion scheme when the UWB measurements are unavailable.
Full-size DOI: 10.7717/peerj-cs.630/fig-2
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where ðx Ið Þ
t ; y Ið Þ

t ; z Ið Þ
t Þ is the INS-measured position Po(I) in east, north, and the upside

direction, respectively, ðxðUÞ
t ; yðUÞ

t ; z Uð Þ
t Þ is the UWB-measured position Po(U) in east,

north, and the up direction respectively, yt ∼ N(0, R) is the measurement noise and R is its
covariance. The KF filtering algorithm based on the model (1) and (2) is listed in
Algorithm 1.

THE SCHEME OF THE NEURAL NETWORK (NN)
In case of outage in complex indoor environment, due to the lack of UWB measurements,
the observation vector in Kalman filter become unavailable. To provide the observation
vector for the data fusion filter, the Neural Network (NN) is employed in this work.

However, it should be noticed that it is hard to model mathematically the relation
between the measurements of the data fusion filter Yt and the state vector x̂tjt"1. For
overcoming this issue, the NN is trained to build the mapping between them using the KF’s
measurement Yt, t ∈ [1, +∞) and the x̂tjt"1; t 2 ½1;þ∞Þ collected after normal flight of
the quadrotor. The input and target of the NN model are chosen as x̂tjt"1 and Yt

respectively. In this work, we select the simple BP neural network structure without hidden
layer. Build the mapping between x̂tjt"1 and Yt using the δPot, t∈ [1,∞) and the
x̂tjt"1; t 2 ½1;∞Þ via NN.

The NN method is summarised in Algorithms 2 and 3. In the Algorithm 2, the KF
provides the x̂t and the P̂t normally. Then, the NN is used to build the mapping between
x̂tjt"1 and Yt using the δPot, t ∈ [1,∞) and the x̂tjt"1; t 2 ½1;∞Þ on off-line model.

In the Algorithm 3, the KF works normally when the Po(U) is available. Here, the
KF is used to provide the estimation of the δPo using the observation vector

Yt ¼ xðIÞt " xðUÞt yðIÞt " yðUÞt zðIÞt " zðUÞt

h iT
. Once the Po(U) is unavailable, the

proposed NN assisted Kalman filtering algorithm estimate Yt using x̂tjt"1 and previously
built mapping via NN.

Algorithm 1 The KF filtering algorithm based on the model (1) and (2).

Data: Yt, Q, R

Result: x̂t ,P̂t

1 begin

2 for t = 1: ∞ do

3 x̂tjt"1 ¼ Fx̂t"1;

4 P̂tjt"1 ¼ FP̂t"1FT þQ;

5 Kt ¼ P̂tjt"1HT HP̂tjt"1HT þ R
$ %"1

;

6 x̂t ¼ x̂tjt"1 þ Kt Yt " Hx̂tjt"1
& '

;

7 P̂t ¼ I" KtHð ÞP̂tjt"1;

8 end for

9 end
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TEST
In order to demonstrate the effectiveness of the proposed method, the real test will be
investigated in this section.

Algorithm 2 NN assisted Kalman filtering algorithm (off-line model).

Data: Yt, Q, R

Result: x̂t ,P̂t the mapping between X̂t|t -1 and Yt

1 begin

2 for `t = 1:∞ do

3 x̂tjt"1 ¼ Fx̂t"1;

4 P̂tjt"1 ¼ FP̂t"1FT þQ;

5 Kt ¼ P̂tjt"1HT HP̂tjt"1HT þ R
$ %"1

;

6 x̂t ¼ x̂tjt"1 þ Kt Yt " Hx̂tjt"1
& '

;

7 P̂t ¼ I" KtHð ÞP̂tjt"1;

8 end for

9 Build the mapping between x̂tjt"1 and Yt using the δPot, t ∈ [1,∞) and the x̂tjt"1; t 2 ½1;1Þ via NN;

10 end

Algorithm 3 NN assisted Kalman filtering algorithm (on-line model).

Data: Yt, Q, R, the mapping between x̂tjt"1 and Yt

Result: x̂t ,P̂t

1 begin

2 for t = 1:∞ do

3 x̂tjt"1 ¼ Fx̂t"1;

4 P̂tjt"1 ¼ FP̂t"1FT þQ;

5 if Po(U) is available then

6 Yt ¼
x Ið Þ
t " x Uð Þ

t

y Ið Þ
t " y Uð Þ

t

z Ið Þ
t " z Uð Þ

t

2

64

3

75;

7 else

8 Estimate Yt using x̂tjt"1 and previously built the mapping between x̂tjt"1 and Yt via NN;

9 end if

10 Kt ¼ P̂tjt"1HT HP̂tjt"1HT þ R
$ %"1

;

11 x̂t ¼ x̂tjt"1 þ Kt Yt "Hx̂tjt"1
& '

;

12 P̂t ¼ I" KtHð ÞP̂tjt"1;

13 end for

14 end
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Figure 3 Test environment. Full-size DOI: 10.7717/peerj-cs.630/fig-3

Figure 4 The quadrotor used in this work. Full-size DOI: 10.7717/peerj-cs.630/fig-4
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Figure 5 The reference path, UWB RNs, and the outage areas used in the test.
Full-size DOI: 10.7717/peerj-cs.630/fig-5

Figure 6 The trajectories estimated by the LS-SVM and the NN in outage areas: (A) outage #1,
(B) outage #2, (C) outage #3, and (D) outage #4. Full-size DOI: 10.7717/peerj-cs.630/fig-6
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Experimental settings
In this section, the real test will be considered to show the validity of the proposed method.
The real test is done in the No. 1 building, University of Jinan, China, the test environment
is displayed in Fig. 3. The quadrotor used in this work is shown in Fig. 4. Here, we employ
the quadrotor to carry UWB blind node (BN) and the inertial measurement unit (IMU).
The UWB BN fixed on the target quadrotor is able to collect the distances di,i ∈ [1, 6]
between the target quadrotor and the UWB reference node (RN). Here, the i has the same
number as the UWB RN. Then, the UWB position Po(U) can be computed via the the di,i ∈
[1, 6]. And the INS position Po(I) is provided by the IMU. The difference δPo between the
Po(I) and Po(U) is used as the measurement of the KF. In the test, the quadrotor runs
following the reference path, which is shown in Fig. 5. In this work, the sample time is set
to 0.02s. In order to indicate the effect of the proposed method, four UWB outage areas
(#1, #2, #3, and #4) are simulated as shown in Fig. 5.

Localization errors
In this subsection, the performance of the proposed NN assisted KF will be investigated.
Here, we compare the NN assisted KF’s performance with the least squares support vector
machine (LS-SVM) assisted KF. In this work, we employ the mean square error (MSE) at
each time index, which is calculated by the follows:

MSE Poð Þt
¼ 1

3
xt " xreft

( )2
þ yt " yreft

( )2
þ zt " zreft

( )2
* +

; (3)

where MSE Poð Þt means the MSE of the position at time index t, xt; yt; ztð Þ is the estimated
position in x, y, and z directions at the time index t, xreft ; yreft ; zreft

( )
is the reference

position in x, y, and z directions at the time index t.
Figure 6 shows the trajectories estimated by the LS-SVM and the NN in outage areas #1,

#2, #3, and #4. From the figures, one can see easily that in the outages areas #1, #2, #3,
and #4, when UWB measurements are unavailable, the NN can still make decisions
that are close to the reference path, while the LS-SVM algorithm gives a large accumulated
error.

The MSEs estimated by NN (green line) and LS-SVM (blue line) in the outages areas #1,
#2, #3, and #4 are shown in Fig. 7. From the figures, one can see that the MSE of the
LS-SVM algorithm has a larger accumulated error compared with the NN. The average
MSEs Produced by NN and LS-SVM in the outages areas #1, #2, #3, and #4 are listed
in Table 1. It can be infered from the table that the average MSEs of the NN are
smaller than the LS-SVM in the outages areas #1, #2, #3, and #4. Compared with the
LS-SVM, the proposed NN reduced the localization error by about 54.34%. Thus, we can
conclude that the proposed NN-based method can effectively reduce the localization
error.
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CONCLUSION
In this work, in order to make the data fusion filter work properly under the condition that
the UWB data is unavailable due to some harsh indoor environments, the NN assisted KF
for fusing the UWB and the INS data seamlessly has be investigated. The contributions of
this work are summarized as following:

! An NN assisted KF scheme has been designed for fusing the INS and UWB
measurement.

! The model of the KF for the integrated scheme has been investigated.

! The NN assisted KF for fusing the UWB and the INS data seamlessly has been
investigated. In the proposed approach, the KF provides the localization information

Table 1 Average MSEs produced by NN and LS-SVM in outages #1–#4.

Method MSE (m2)

#1 #2 #3 #4 Mean

LS-SVM 2.7445 0.1453 2.7147 16.6635 5.5670

NN 0.0190 0.0524 0.0422 0.0537 2.5418

Figure 7 The MSEs estimated by the LS-SVM and the NN in outage areas: (A) outage #1, (B) outage
#2, (C) outage #3, and (D) outage #4. Full-size DOI: 10.7717/peerj-cs.630/fig-7
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when the UWB data is available. Meanwhile, the KF is used to assist the NN to build the
mapping between the x̂tjt"1 and Yt off-line. The NN can estimate the measurement
vector of the KF when the UWB data is unavailable.

! Real tests have been done to show better performance of the proposed approach.

Based on the results presented in this work, we are now working on further
developments of the proposed algorithms to build the mapping with the deep learning and
plan to report the results in the near future.
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ABSTRACT
Seed purity directly affects the quality of seed breeding and subsequent processing
products. Seed sorting based on machine vision provides an effective solution to this
problem. The deep learning technology, particularly convolutional neural networks
(CNNs), have exhibited impressive performance in image recognition and classifica-
tion, and have been proven applicable in seed sorting. However the huge computational
complexity and massive storage requirements make it a great challenge to deploy
them in real-time applications, especially on devices with limited resources. In this
study, a rapid and highly efficient lightweight CNN based on visual attention, namely
SeedSortNet, is proposed for seed sorting. First, a dual-branch lightweight feature ex-
traction module Shield-block is elaborately designed by performing identity mapping,
spatial transformation at higher dimensions and different receptive field modeling,
and thus it can alleviate information loss and effectively characterize the multi-scale
feature while utilizing fewer parameters and lower computational complexity. In the
down-sampling layer, the traditional MaxPool is replaced as MaxBlurPool to improve
the shift-invariant of the network. Also, an extremely lightweight sub-feature space
attention module (SFSAM) is presented to selectively emphasize fine-grained features
and suppress the interference of complex backgrounds. Experimental results show that
SeedSortNet achieves the accuracy rates of 97.33%and 99.56%on themaize seed dataset
and sunflower seed dataset, respectively, and outperforms the mainstream lightweight
networks (MobileNetv2, ShuffleNetv2, etc.) at similar computational costs, with only
0.400M parameters (vs. 4.06M, 5.40M).

Subjects Artificial Intelligence, Computer Vision, Embedded Computing, Real-Time and
Embedded Systems
Keywords Seed sorting, Computer vision, Lightweight CNN, Attention mechanism

INTRODUCTION
Seed purity directly affects the quality of seed breeding and subsequent processing products.
For example, in the process of seed harvest and storage, the impurities or hybrids may be
mixed in the normal seed, which results in the economic losses to agricultural production
and processing. Therefore, it is crucial to sort impurities and hybrids to ensure that the
seed purity meet the market criteria. However, the traditional manual sorting methods
are laborious and time-consuming, and hence less efficient. With the evolution of the
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technology, there has been a tremendous development in the field of machine vision
(Rehman et al., 2019;Wu et al., 2020) and robot control technology (Liu, Yu & Cang, 2019;
Liu et al., 2020; Han et al., 2020b). The automatic sorting methods (Li et al., 2019) based
on the above technologies provide a promising solution.

Traditional automatic seed sorting methods adopt hand-crafted features for image
characterization, such as color, shape, texture, and wavelet features or their combina-
tions (Liu et al., 2015; HemaChitra & Suguna, 2018; Li et al., 2019). Then, the effective
classifiers are employed to realize seed recognition such as linear discriminant analysis
(LDA) (Choudhary, Paliwal & Jayas, 2008), support vector machine (SVM) (Altuntas et
al., 2018), decision tree (DT) (Kayacan, Sofu & Cetisli, 2016), least square (LS) (Mebatsion,
Paliwal & Jayas, 2013) and artificial neural network (ANN) (Liu et al., 2015). However,
these methods are designed for a specific kind of seed and lack self-adaptivity. In
the last three years, mainly due to the advances of deep learning, more concretely
convolutional neural networks (CNNs), the quality of image classification (Krizhevsky,
Sutskever & Hinton, 2012; Han et al., 2018), object detection (Ren et al., 2015; Sun et al.,
2019; Bochkovskiy, Wang & Liao, 2020) and semantic segmentation (Chen et al., 2014) has
been progressing at a dramatic pace. Recently, some researchers also adopted deep learning
technology in crop identification tasks and achieved good performance (Ni et al., 2019;
Kurtulmus, 2021).

The crop recognition and classification methods, especially for seed sorting, should be
deployed on a fast and stable embedded system due to the requirement of higher processing
speed. However, the performance of these methods often depends on a deeper, wider
network structure, thus it suffers from huge computational complexity andmassive storage
requirements (Han et al., 2018). Therefore, the deep CNN model should be compressed
and streamlined while maintaining high recognition accuracy. Recently, some lightweight
and efficient CNN models have been designed, such as MobileNet (Howard et al., 2017),
MobileNetv2 (Sandler et al., 2018), ShuffleNet (Zhang et al., 2018) and ShuffleNetv2 (Ma
et al., 2018) for the real-time detection and recognition tasks. However, due to the lower
discrimination of different types of seed, the feature extraction ability of these models is
insufficient, thus leads to low recognition accuracy.

In this paper, a lightweight CNN based on visual attention for seed sorting is proposed.
A dual-branch lightweight feature extraction module (i.e., Shield-block) is designed to
improve the feature characterization ability while utilizing fewer parameters and lower
computational complexity, and the traditionalMaxPool is replaced asMaxBlurPool (Zhang,
2019) to improve the shift-invariant of the network in the down-sampling layer. In addition,
an extremely lightweight sub-feature space attention module (SFSAM) is proposed as the
basic unit of the built CNN model to selectively emphasize fine-grained features and
suppress the interference from complex backgrounds. Overall, ours contributions are
three-fold as follows:

• We designed a dual-branch lightweight feature extraction module (i.e, Shield-block)
to alleviate information loss and effectively characterize the multi-scale feature while
utilizing fewer parameters and lower computational complexity.
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• We proposed an extremely lightweight sub-feature space attention module, which
divides the feature maps into different subspaces and infers different attention maps
for each subspace. To selectively emphasize fine-grained features, and suppress the
interference of complex backgrounds.

• Experiments are conducted on themaize seed dataset and sunflower seed dataset, and the
results show that SeedSortNet achieves higher accuracy compared with the mainstream
lightweight networks (MobileNetv2, ShuffleNetv2, etc.) at the similar computational
cost, even outperforms the deeper and wider networks, such as VGG (Simonyan &
Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016).

The remainder of the paper is organized as follows. In ‘Related Work’, we summarize
some related work on seed sorting and lightweight model design. ‘Proposed Method’
introduces the technical details of the proposed method and network architecture. In
‘Experiments’, we carry out a series of comparative experiments on maize and sunflower
seed datasets and the experimental results are analyzed. Finally, we conclude in ‘Discussion’.

RELATED WORK
In the following, we review the existing crop identification methods and related
technologies, such as CNN model compression and lightweight model design.

Crop identification
Agricultural product assessment and recognition based on machine vision technology have
been a research focus in agricultural applications, which is widely used in the detection and
sorting of agricultural products such as wheat, corn, fruits, and the identification of plant
diseases and insect pests.

Liu et al. (2015) proposed a novel soybean seed sorting based on neural network. Eight
shape features, three-color features, and three texture features are extracted to characterize
the soybean seed, and BP neural network is used as the classification model to recognize
the different defects. Experiments are conducted on the collected image set which includes
857 images of soybean seeds with insect damage, mildew, and other defects, and the results
achieve an average recognition accuracy of 97.25%. Huang (2012) proposed a neural
network-based quality evaluation and classification method for areca nuts. The axis length,
secondary axis length, axis number, area, perimeter, compactness, and the average gray
level are used as the feature, and a back-propagation neural network classifier is employed
to sort the quality of the areca nuts. Aznan et al. (2016) adopted machine vision methods to
discriminate the variety of cultivated rice seed, namelyM263. They firstly extracted different
morphological features and then adopted a stepwise discriminant function analysis (DFA)
to classify different types of rice. The classification accuracy for testing and training sets
is 96% and 95.8%, respectively. HemaChitra & Suguna (2018) presented a novel sorting
method of Indian pulse seeds based on image analysis techniques. In this method, they
extracted the colors, shapes, and texture features, and adopted SVM for classification. The
accuracy of their method can reach 98.9% accuracy. Li et al. (2019) designed a system to
distinguish different damaged types of corn. An image database including normal corn
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and six different damaged corns is constructed. The features such as color and shape are
extracted, then the maximum likelihood classifier is leveraged to discriminate these corns.
Experiment results show that the classification accuracy is above 74% for all the classes.
However, these methods adopt the handcraft features designed for the specific crops and
the traditional classifier for sorting, and suffer from poor adaptability and low accuracy.

Due to the excellent feature representation ability, the deep learning models represented
by CNN have achieved good performance in image classification, object detection, and
semantic segmentation, and have also been successfully applied in plant disease detection
and crop type classification. Sladojevic et al. (2016) proposed a CNN-based system to
identify 13 types of plant diseases out of healthy leaves. The performance of this approach
exhibited a top-1 success of 96.3%. Veeramani, Raymond & Chanda (2018) studied the
effect of the number of convolution kernels in the two layers CNN on the recognition
performance of haploid and diploid corn seeds. Veeramani, Raymond & Chanda (2018)
adopted VGG19 and GoogleNet to classify corn seed defects and analyzed the influence of
the two networks with different depths on the recognition performance. Dolata & Reiner
(2018) proposed a method for the classification of barley varieties based on CNN, which is
based on two separate convolutional layers to analyze dorsal and ventral sides, respectively.
The network is trained on a small sample set of 200-500 cases in 8 categories, and the
classification accuracy reaches 97%. Kurtulmuş (2021) adopted AlexNet (Krizhevsky,
Sutskever & Hinton, 2012), GoogleNet, and ResNet to identify sunflower seed varieties,
and then they were also evaluated in terms of both accuracy and training time, GoogleNet
obtained the highest classification accuracy (95%).

The CNN-based crop identification method can achieve the better recognition rate and
has higher self-adaptivity. However, the performance of the deep learning method depends
on the depth and width of the model, the researchers often boost the depth and width of
the model to improve the performance of the detection and recognition system. But this
strategy results in slow speed and difficult deployment in industrial applications.

Model lightweight
For the specific application of crop seed sorting, due to the extremely fast production
speed, it is necessary to develop the lightweight CNN model while maintaining a higher
recognition accuracy. To trade off the model size and performance for deep neural
network architectures has been an active research area, the related technologies include
model compression, lightweight network design, etc (Liang et al., 2021).

Model compression
Model compression aims at generating the small network models from the trained large
network models while keeping the performance. The typical techniques include pruning,
quantization, and knowledge distillation. Pruning technology is based on the assumption
thatmany parameters in the deep neural network are redundant, then theweights (Guo, Yao
& Chen, 2016; Aghasi et al., 2016; Liu et al., 2018) or filters (Li et al., 2016; Liu et al., 2017;
Lin et al., 2020) with low correlation can be removed to make the network structure sparse.
Quantizationmethods aim to deploy the CNNmodel on the terminal hardware and encode
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the weights and activations using 8-bit integers (INT8) without incurring a significant loss
in accuracy. Some other quantization methods even adopt INT4 or lower, such as binary
quantization (Courbariaux et al., 2016) and ternary quantization (Mellempudi et al., 2017)
to reduce the model size. Knowledge distillation is firstly proposed by Bucilu, Caruana &
Niculescu-Mizil (2006) and generalized byHinton, Vinyals & Dean (2015) and can generate
a small student network by learning the behavior of a large teacher network. Cho &
Hariharan (2019) empirically analyzed in detail the efficacy of knowledge distillation.
However, compared with the original network, model compression is difficult to achieve
better performance. The compression size is too large, which will lead to significant decrease
of performance.

Lightweight network design
Lightweight network design refers to the redesign of the network structure based on the
existing CNN model to reduce the parameters and the computational complexity. Lin,
Chen & Yan (2013) proposed a Network-In-Network architecture, which used 1×1
convolution to increase network performance while maintaining a lower computational
complexity. SqueezeNet (Iandola et al., 2016) is a lightweight network structure based
on 1×1 convolution. The squeeze and expand module proposed by this model can
effectively reduce the parameters while ensuring recognition accuracy. The recognition
accuracy of the proposed method can be up to 57.55%, and it is similar with the
AlexNet with the model size of 50×smaller. Google developed two efficient architectures
denoted as MobileNet (Howard et al., 2017) and MobileNetv2 (Sandler et al., 2018) in
2017 and 2018, respectively. MobileNet proposed depthwise separable convolutions to
reduce the computational complexity and achieved the state-of-art accuracy with low
latency. Thereafter, the linear bottleneck with inverted residual structure is proposed in
MobileNetV2 to construct a more efficient architecture. ShuffleNet (Zhang et al., 2018)
proposed the pointwise group convolution and channel shuffle operations to improve the
recognition accuracy while reducing latency. Combining the advantage of MobileNet and
ShuffleNet, Ma et al. (2018) proposed ShuffleNetV2, which improves group convolution
by channel split and used channel shuffle for the split channel as well. Wang & Yu (2020)
proposed the Tied Block Convolution (TBC) which shares the same thinner filters over
equal blocks of channels and produces multiple responses with a single filter, to design a
lightweight model. GhostNet (Han et al., 2020a) applied a series of linear transformations
to generatemanyGhost featuremaps, and it can characterize the required information from
the original features at a small cost, which effectively reduces calculation and parameters.
However, due to the low discrimination of crop seeds, the recognition accuracy will be
significantly reduced when the existing lightweight models are directly applied to the seed
sorting. Therefore, a rapid and highly efficient lightweight CNNmodel should be developed
based on the characteristics of crop seeds while keeping the accuracy.

PROPOSED METHOD
Seed sorting based on deep learning is a promising method for seed breeding and
subsequent processing products. In this paper, we proposed a rapid and efficient lightweight
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Figure 1 The flowchart of the proposed SeedSortNet model.
Full-size DOI: 10.7717/peerjcs.639/fig-1

CNN model with a dual-branch network structure based on visual attention for seed
sorting, denoted as SeedSortNet. It is an efficient and lightweight end-to-end recognition
framework, which is mainly composed of sequential cascade layers and basic blocks, and
the overall structure of the model is shown in Fig. 1. First, a dual-branch lightweight feature
extraction module, namely Shield-block, is designed for effective feature extraction. Then,
the traditional convolution is replaced by depthwise convolution andpointwise convolution
to achieve the trade-off between classification accuracy and efficiency. Moreover, in the
down-sampling layer,MaxPool is substituted asMaxBlurPool to improve the shift-invariant
of the network. Finally, we propose an extremely lightweight sub-feature space attention
module to selectively emphasize fine-grained features and suppress the interference of
complex backgrounds. And the proposed method is specifically described as follows.

Network construction
Due to the required higher processing speed and recognition accuracy, the representative
deep neural network model (eg, ResNet, VGG, GoogLeNet, etc.) cannot efficiently tackle
with the seed sorting task because of the lower efficiency and insufficient feature extraction
ability. To address these issues, we construct a novel lightweight and efficient network
which consists of Root-model, Shield-block, and a novel down-sampling module.

A.Root-model . To effectively improve the feature representation ability while reducing
calculation, a dual-branch structure, namely Root-model (Fig. 2A), is designed as the first
stage of SeedSortNet. First, the sixteen 3×3 filters are utilized to extract the shallow feature
information (such as texture, shape, color, etc.) of the test image. Then, in one branch, the
MaxBlurPool which is a non-overlapping 2×2 window is designed for reducing the aliasing
effect and improving the shift-invariant of the network. In another branch, we firstly use
3×3 filters with the stride of 2 to convolute the input features and then adopt 1×1 filters
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Figure 2 The schema of Root-model (A) and Shield-block (B).
Full-size DOI: 10.7717/peerjcs.639/fig-2

to reduce the output dimension of the branch. Finally, the features generated by the two
branches are concatenated together as the input of the next layer.

B.Shield-block. The inverted residual block (Sandler et al., 2018) which shifts the
identity mapping from high-dimensional representations to low-dimensional ones (i.e., the
bottlenecks), has been successfully applied in the design of lightweight networks. However,
the connection of identity mapping between thin bottlenecks would inevitably lead to
information loss since the residual representations are compressed (Daquan et al., 2020).
In addition, this connection would also weaken the propagation capability of gradients
across layers due to gradient confusion arising from the narrowed feature dimensions, and
hence affect the training convergence and model performance (Sankararaman et al., 2020).
To address these issues, we propose a dual-branch feature extraction module by improving
the inverted residual block in this article (shown in Fig. 2B).

In the main branch, two 3×3 depthwise convolution layers are utilized to encode richer
spatial information to generate a more expressive representation. Then we adopt two
pointwise convolutional layers between two 3×3 depthwise convolutional layers, the first
point convolution layer reduces the feature channel dimension and the latter increases
its dimension, to encode the cross-channel information of the feature maps and reduce
the computational complexity. Also, the linear activation function is adopted after the
first pointwise convolutional layer and the last depthwise convolutional layer, which can
prevent the feature values from being zeroed and hence reduce information loss.

For the other branch, a 3×3 depthwise separable convolution is designed to acquire
the spatial representation of different receptive fields, and thus improve the feature
representation ability. In the end, the concatenation of the two branches and its shortcut
connection with the input feature are combined as the final output.

In the following, we present the detailed data processing operator of Shield-block, and it
is shown in Table 1, where H ,W and C represents the height, width, and channel number
of the feature map, and 1/t represents the reduction rate of channels. Moreover, to ensure
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Table 1 Data processing in the Shield-block.

Input dimension Operator Output dimension




H ×W ×C
H ×W ×C H ×W ×C

H ×W ×C× 1
t

H ×W ×C

H ×W ×C×
(
1− 1

r

)









3×3 Dwise Conv, Relu6
1×1 Conv, Linear 3×3 Dwise Conv, Relu6
1×1 Conv, Re lu6 1×1 Conv , Re lu6
3×3 Dwise Conv, Linear

Concat









H ×W ×C

H ×W ×C× 1
t

H ×W ×C

H ×W ×C×
(
1− 1

r

)
H ×W ×C× 1

r

H ×W ×C×
(
1− 1

r

)

H ×W ×C





MaxPool Max()

Max()

Max()

Max()

(1) Max(Dense evaluation)     +     (2) Subsampling

Max()

Max()
Conv

*

Blur kernel

(1) Max(Dense evaluation)        +        (2) Anti-aliased Filter        +        (3) Subsampling

MaxBlurPool
(Anti-aliased)

Sampling()

Sampling()

Sampling()

Sampling()

Figure 3 Operation details of MaxPool and anti-aliasedMaxBlurPool.
Full-size DOI: 10.7717/peerjcs.639/fig-3

the input channel dimension is consistent with the output channel dimensional, and the
hyperparameter 1/r (referring to the proportion of the input channel of the sub-branch
output channel) is adopted in this paper, here we empirically set r to 6.

C.Down-sampling . Down-sampling operator can reduce the feature dimensionality
while retaining the valid information. Traditional down-sampling methods (eg. MaxPool,
Strided-Convolution, AvgPool, etc.) violate the shift-equivariance and results in small
shifts in the input that can drastically change the output (Azulay & Weiss, 2018). And
this phenomenon will become more obvious with the increase of the network depth. To
solve this problem, a fuzzy sampling method, namely MaxBlurPool, proposed in (Zhang,
2019) is adopted in our method. The specific process of MaxPool and MaxBlurPool is
shown in Fig. 3. From this figure, we can see that a blur kernel is inserted between max
and subsampling to remove aliased in the MaxBlurPool method, thereby improving the
shift-invariant and enhancing the robustness of the CNN model.

Lightweight sub-feature space attention module (SFSAM)
Due to the low discrimination of different types of seeds, the fine-grained spatial features
are crucial for seed sorting. Therefore, an extremely lightweight sub-feature space attention
module is proposed to selectively emphasize fine-grained features, and suppress the
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Figure 4 The schematic diagram of SFSAM structure.
Full-size DOI: 10.7717/peerjcs.639/fig-4

interference of complex backgrounds. It divides the feature maps into different subspaces
and infers different attention maps for each subspace, thus can generate the multi-scale
feature representation, it is shown in Fig. 4. The detailed process is described as follows.

The input feature map F ∈ RH×W×C is firstly divided into g mutually exclusive
groups

[
F1,F2,F3,...,Fi,...,Fg

]
(i.e., sub-feature spaces),where each sub-feature space Fi

contains n intermediate feature maps. Zagoruyko & Komodakis (2016) have proved that
pooling operations along the channel axis are effective in highlighting informative regions.
Therefore, AvgPool and MaxPool operations are applied to g sub-feature spaces along
the channel axis to generate g groups of average-pooled features Fmax

i ∈ R1×H×W and
max-pooled features Favg

i ∈R1×H×W . Then, these features are concatenated separately to
generate g efficient feature descriptors

[
Fmax
i ,Favi

i
]
. Thereafter, the g group’s subspace

attention maps are generated using Eq.(1).

Mi = softmax(f k×k([MaxPool(Fi),AvgPool(Fi)]))
= softmax

(
f k×k ([Fmax

i ,Favi
i
]))

(1)

where f k×k represents a convolution operation with a filter size of k×k. In this paper, k is
empirically set to 7. The attentionmap in each group (subspace) can capture the non-linear
dependencies among the feature maps by learning to gather cross-channel information.
Meantime, we employ a gating mechanism with a softmax activation to map the attention
weighting tensor into [0,1].

Then, each group of feature maps gets the refined set of feature maps (F̂i) after the
feature redistribution in Eq. (2).

F̂i = (Mi⊗Fi)⊕Fi (2)

where ⊗ is element-wise multiplication and ⊕ is element-wise addition.
The final output F̂ of SFSAM is obtained by concatenating the feature maps of each

group, and it is described as Eq. (3).

F̂ = concat
(
F̂1,F̂2,F̂3,...,F̂i,...,F̂g

)
. (3)
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Table 2 Parameter configuration diagram of the SeedSortNet.

Stage Input Operator t C R

1 224×224×3 Root-module — 32 1
2 112×112×32 Shield-block 2 |6 64 2
3 112×112×64 SFSAM — 64 1
4 112×112×64 MaxBlurPool — 64 1
5 56×56×64 Shield-block 2 |6 128 4
6 56×56×128 SFSAM — 128 1
7 56×56×128 MaxBlurPool — 128 1
8 28×28×128 Shield-block 2 |6 128 5
9 28×28×128 SFSAM — 192 1
10 28×28×192 MaxBlurPool — 192 1
11 14×14×192 Shield-block 2 |6 256 4
12 14×14×256 SFSAM — 256 1
13 14×14×256 MaxBlurPool — 256 1
14 7×7×256 GlobalAvgpool — 256 —
15 1×1×256 Dropout 2D-FC — 2 —

Network topology
In this paper, a novel lightweight CNN model with a dual-branch network structure based
on visual attention, denoted as SeedSortNet, is proposed for seed sorting with higher
efficiency and recognition accuracy. The setting of the proposed SeedSortNet is outlined
in Table 2. Each row denotes a sequence of building blocks, which is the repeated times of
‘R’. The reduction ratio of channels is used in each Shield-block is denoted by ‘ 1/t ’, and
‘C’ represents the number of channels in the output feature map.

We first use Root-module to generate 32 feature maps with the size of 112×112.
Then, it is followed by the 15 Shield-blocks, four SFSAM attention modules, and four
down-sampling layers (i.e., MaxBlurPool) spatial location distributions described in Table
2. At the first Shield-block of stages 2, 5, 8, and 11, the identity mappings do not need to be
set because of the increasement of the feature map depth. Besides, we set ‘t ’ to 2 to avoid
the information loss due to the low-dimensional input. Finally, the output of the fourth
down-sampling layer is followed by a global average pooling layer, which can convert 2D
feature maps into 1D feature vectors.

EXPERIMENTS
Experimental datasets
In this section, two datasets are selected for verifying the effectiveness of the proposed
network architecture.

Maize seed dataset
The first dataset is a public haploid and diploid maize seed dataset of the maize research
institute in Sakarya (Turkey), including 3000 RGB images of corn seeds (Altunta, Cömert &
Kocamaz, 2019), and it includes 1230 haploid seeds images and 1770 diploid seed images.
The dimensions of these images depend on the sizes of the seeds and vary between 300×289
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(a)

(b)

Figure 5 Representative samples of sunflower seed dataset. (A) Abnormal sunflower seeds; (B) normal
sunflower seeds.

Full-size DOI: 10.7717/peerjcs.639/fig-5

Table 3 Category distribution and proportion of the training set onmaize seed dataset and sunflower
seed dataset.

Dataset Category distribution The proportion of the training set

Maize 1770 (Diploid) 1230 (Haploid) 75%
Sunflower 7837 (Normal) 7997 (Abnormal) ≈75%

pixels and 610×637 pixels. In the experiment, three-quarters of the dataset are used for
training, and the remaining images are used for testing, as shown in Table 3.

The number of maize seed dataset is limited and may bring the overfitting for the
proposed model. Therefore, the data augmentation methods, such as horizontal flip,
vertical flip, and angle rotation, are adopted to augment the maize seed data set by a factor
of 4. The experimental results prove that such a large dataset is enough to train a model
with very strong generalization ability.

Sunflower seed dataset
To thoroughly evaluate the effectiveness of the proposed method, we constructed our
sunflower seed dataset on an industrial production line for the experiments. The image
acquisition device equipped with a color line scan camera is established to collect 15834
sunflower seed RGB images with the size of 100×100 pixels. And we divided them into
two categories, as shown in Fig. 5. The top row is the abnormal seed images composed of
leaves, stones, defective seeds, etc. The bottom row is the normal sunflower seed images.
It is worth noting that when the picture contains several seeds and impurities or hybrids,
we will classify them as abnormal to ensure a low false alarm. In our experiment, about
three-quarters of the dataset are randomly selected as the training set, and the remaining
images are used for testing, as shown in Table 3.

Implementation details and evaluation metric
Implementation details
All experiments were performed on a 64-bit Linux-based operation system, Ubuntu
18.04. The software is mainly based on the deep learning architecture of Pytorch and
python development environment Spyder. The hardware is based on an Intel(R) Xeon(R)
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Table 4 Calculation formulas and explanations of binary class metrics.

Measure Formulation Evaluation Focus

Accuracy (Acc) tp+tn
tp+fp+tn+fn The overall accuracy of a model.

Precision (p) tp
tp+fp The ratio of correctly classified positive samples to

estimated total positive sample.
Recall (r) tp

tp+fn The proportion of positive values classified as true.

F1-score 2∗p∗r
p+r = 2∗ tp

tp+fp ∗ tp
tp+fn

tp
tp+fp + tp

tp+fn
The harmonic mean between precision and recall.

CPU E5-2650 v4 @2.20 GHz and two NVIDIA Quadro M5000 GPUs, with CUDA10.2
accelerating calculation.

And we train the network by mini-batch SGD, with an initial learning rate of 0.001 and
a reducing factor of 0.1 after 30 epochs. The momentum parameter is set to 0.9 and the
weight decay parameter is 0.0001. The number of iterations in training is 100, and the batch
size is set to 16 and 64 on the maize and sunflower datasets, respectively. Besides, the input
image size is resized to 224×224-pixel by the CenterCrop function, and the parameter g is
set to 4 by analyzing experimental results.

Evaluation metric
To quantitively evaluate the effectiveness of the proposed method, four metrics, such as
true positive (tp), true negative (tn), false positive (fp), and false negative (fn) are adopted in
our method. tp is the true positive and represents correctly recognized haploid maize seeds
or the normal sunflower seed. tn is the true negative and represents correctly recognized
diploid maize seeds or the abnormal sunflower seed. fp is the false positive and represents
the falsely recognized haploid maize seeds or the normal sunflower seed. fn is the false
negative and represents falsely recognized diploid maize seeds or the abnormal sunflower
seed. Based on these metrics, four evaluation metrics, accuracy (Acc), precision (p), recall
(r) and F1-score, are calculated as Table 4.

It should be noted that the F1-score metric can better interpret the true performance
when the number of samples is not balanced. Receiver operating characteristic (ROC)
curves are also a useful tool for measuring a model performance without considering
class distribution or error costs. Also, the number of parameters and required float
points operations (denoted as FLOPs) are also employed to evaluate the model size and
computational complexity, which are widely-used protocols.

Result analysis
Results on maize seed dataset
To assess the performance of our network (i.e., SeedSortNet) in the maize dataset. Six
representative CNN models (i.e., AlexNet, VGG, ResNet, GoogleNet, DenseNet (Huang et
al., 2017), and Resnext (Xie et al., 2017) are selected to conduct comparative experiments.
The experimental results are shown in Table 5.

From the results in Table 5, we can observe that the adopted network can achieve
good classification accuracy, and reach more than 90% under the same experimental
environment. SeedSortNet has the best performance, with accuracy, precision, recall,
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Table 5 Performance comparison of different network onmaize seed dataset.

Model Parameters FLOPs Acc Precision Recall F1-score

AlexNet 57.01M 711.46M 93.33 93.39 92.80 93.07
VGG11 128.77M 7.63G 94.67 94.54 94.43 94.48
VGG13 128.96M 11.33G 94.50 94.51 94.10 94.29
ResNet18 11.18M 1.82G 95.33 95.18 95.18 95.18
ResNet50 23.51M 4.12G 96.00 95.73 96.05 95.88
DenseNet121 6.96M 2.88G 95.83 95.58 95.85 95.71
GoogleNet 5.60M 1.51G 96.67 96.50 96.62 96.56
ResNext101 86.75M 16.48G 96.00 95.77 95.99 95.88
SeedSortNet 0.40M 512.06M 97.33 97.30 97.18 97.24

Table 6 Performance comparison of maize seed dataset in lightweight CNNs.

Model Parameters FLOPs Acc F1-score

MobileNetv1 3.22M 587.94M 94.00 93.81
MobileNetv2 1.4× 4.06M 566.33M 96.00 95.89
ShuffleNetv1 2×(g=3) 3.53M 537.48M 96.67 96.55
ShuuffleNetv2 2× 5.35M 591.79M 96.00 95.90
GhostNet 2× 12.96M 529.89M 96.50 96.41
SeedSortNet 0.40M 512.06M 97.33 97.24
MobileNetv1 0.75× 1.83M 339.80M 91.83 91.65
MobileNetv2 2.23M 318.96M 95.83 95.71
ShuffleNetv1 1.5×(g=3) 2.00M 301.90M 96.17 96.05
ShuffleNetv2 1.5× 2.48M 302.65M 95.50 95.38
GhostNet 1.5× 7.79M 310.76M 95.83 95.72
SeedSortNet 0.75× 0.23M 338.64M 97.00 96.90

and F1-score of 97.33%, 97.30%, 97.18%, and 97.24%, respectively, with a relatively low
computational complexity and model size. These results verify the effectiveness of the
proposed method.

Meanwhile, we also compared the performance of mainstream lightweight CNN
models (eg, MobileNetv1, MobileNetv2, ShuffleNetv1, ShuffleNetv2, GhostNet) under
different calculation benchmarks. The experimental results on the maize dataset in
terms of computational complexity, model parameters, classification accuracy, and
F1-score are shown in Table 6. The models are typically grouped into two levels of
computational complexity for embedded device applications, i.e., ∼300MFLOPs and
500 ∼600MFLOPs. From the results, we can see that the larger FLOPs lead to higher
accuracy in these lightweight networks. SeedSortNet outperforms other competitors
consistently in classification accuracy and F1-score at various computational complexity
levels. Furthermore, the number of parameters has also greatly decreased for the proposed
method.

In order to further demonstrate the effectiveness of the proposed method, ROC curve
is adopted to measure the model performance. Figures 6A–6C shows the ROC curves and
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Figure 6 ROC curves of the CNNmodels onmaize seed dataset (A, B, C) and sunflower seed dataset
(D, E, F). (A & D) ROC curves of SeedSortNet and Six representative CNN models (i.e., AlexNet, VGG,
ResNet, GoogleNet, DenseNet, and Resnext), (B & E) ROC curves of the lightweight network (500
∼600MFLOPs), (C & F) ROC curves of the lightweight network (∼300MFLOPs).

Full-size DOI: 10.7717/peerjcs.639/fig-6

the calculated area under curve (AUC) scores for using the proposed method and other
network models (i.e., the above comparison network) on the maize seed dataset. From
AUC scores, it is observed that the method achieve the best result of 99.33% compared with
other models, which is superior to the above representative representative CNN models
and lightweight networks.

Results on sunflower seed dataset
Table 7 demonstrates themodel size, computational complexity, accuracy, recall, specificity
and F1-score of different network models on the sunflower seed dataset. From the table, we
can see that the proposed method has the highest accuracy, precision, recall, and F1-score,
while it has the lower FLOPs and parameters.

Similar to the maize seed sorting, we also conducted comparative experiments with
the mainstream lightweight CNN models (eg, MobileNetv1, MobileNetv2, ShuffleNetv1,
ShuffleNetv2, GhostNet) under different calculation benchmarks on the sunflower seed
dataset. From Table 8, we can find that the classification accuracy and F1-score of the
SeedSortNet are higher than other network models under a similar calculation cost.
Meantime, we find that the test dataset is relatively balanced, thus its F1-score and accuracy
are almost the same. Therefore, the proposed SeedSortNet is more suitable for deployment
on edge devices and has the ideal sorting accuracy.

In Figs. 6D–6F, we find that the AUC score of the proposed method is closer to 1.0
(i.e., 0.9995) on the sunflower seed dataset compared with other CNN models, which
demonstrates SeedSortNet has a good ability to prevent misclassification.
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Table 7 Performance comparison of different network on sunflower seed dataset.

Model Parameters FLOPs Acc Precision Recall F1-score

AlexNet 57.01M 711.46M 99.00 99.01 98.99 99.00
VGG11 128.77M 7.63G 97.78 97.78 97.80 97.78
VGG13 128.96M 11.33G 98.44 98.43 98.45 98.44
ResNet18 11.18M 1.82G 99.05 99.04 99.05 99.05
ResNet50 23.51M 4.12G 99.22 99.22 99.22 99.22
DenseNet121 6.96M 2.88G 98.90 98.89 98.91 98.90
GoogleNet 5.60M 1.51G 99.34 99.34 99.34 99.34
ResNext101 86.75M 16.48G 99.22 99.22 99.22 99.22
SeedSortNet 0.40M 512.06M 99.56 99.56 99.56 99.56

Table 8 Performance comparison of sunflower seed dataset in lightweight CNNs.

Model Parameters FLOPs Acc F1-score

MobileNetv1 3.22M 587.94M 98.36 98.36
MobileNetv2 1.4× 4.06M 566.33M 98.83 98.83
ShuffleNetv1 2×(g=3) 3.53M 537.48M 99.19 99.19
ShuuffleNetv2 2× 5.35M 591.79M 99.00 99.00
GhostNet 2× 12.96M 529.89M 98.80 98.80
SeedSortNet 0.40M 512.06M 99.56 99.56
MobileNetv1 0.75× 1.83M 339.80M 98.32 98.31
MobileNetv2 2.23M 318.96M 98.90 98.90
ShuffleNetv1 1.5×(g=3) 2.00M 301.90M 99.12 99.12
ShuffleNetv2 1.5× 2.48M 302.65M 98.73 98.73
GhostNet 1.5× 7.79M 310.76M 98.44 98.44
SeedSortNet 0.75× 0.23M 338.64M 99.34 99.34

Ablation study
The ablation study is carried on SeedSortNet and the network without SFSAM attention
mechanism. The experimental results in Table 9 show that F1-score of 96.33% and 99.37%
are obtained without SFSAM on the maize and sunflower seed datasets, respectively,
which proves that Root-model and Shield block have better information extraction
abilities. Meanwhile, SeedSortNet can get 97.33% and 99.56% F1-score, respectively. These
demonstrate that SFSAM can selectively emphasize information features and suppress the
interference of complex backgrounds, thereby improving the performance. At the same
time, it can also be observed from Table 9 that SFSAM does not introduce too many
parameters and calculations.

Effects of g selection in SFSAM
As described in the SFSAM section, the feature maps are divided into g groups and generate
g attention maps. Each attention map can capture cross-channel information from the
feature maps in its respective group. When g = 1, the cross channel information for
the whole feature volume is captured by a single attention map, which is not sufficient
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Table 9 F1-score of SeedSortNet and SeedSortNet (without SFSAM) onmaize seed dataset and sun-
flower seed dataset.

Model Parameters (M) FLOPs F1-score(maize) F1-score
(sunflower)

SeedSortNet(without SFSAM) 0.399M 505.26M 96.22 99.39
SortSeedNet 0.400M 512.06M 97.24 99.56

Table 10 F1-score of SeedSortNet (with fewer parameters/FLOPs; g = 1,4,8,16) onmaize seed dataset
and sunflower seed dataset.

Model Parameters FLOPs F1-score(maize) F1-score(sunflower)

SortSeedNet (g=1) 0.399M 506.56M 96.39 99.44
SortSeedNet (g=4) 0.400M 512.06M 97.24 99.56
SortSeedNet (g=8) 0.402M 518.85M 96.90 99.51
SortSeedNet (g=16) 0.405M 532.45M 96.57 99.46

to capture the complex relationships in the entire feature space and will result in lower
predictive performance.When 1< g <C , the better exchange of cross-channel information
can be obtained. Therefore, we conduct experiments on the different parameters assigned
by g (such as g = 1,4,8,16), and the results in Table 10 confirm the correctness of the
above analysis. It can also be observed that the maize and sunflower seed datasets have
achieved higher performance gains, and the FLOPs and parameters increase with the
increase g . Based on the experimental results, we adopt g = 4 to conduct the above series of
comparative experiments which provides a reasonable trade-off between preserving good
performance and improving computational efficiency.

DISCUSSION
In this paper, we present a rapid and highly efficient lightweight CNN for seed sorting
(i.e., SeedSortNet). We first design a novel dual-branch lightweight feature extraction
module (i.e., Shield block) for building efficient neural network architectures. In the
down-sampling layer, MaxBlurPool is employed instead of frequently-used MaxPool to
improve the shift-invariant of the network. Then we proposed a lightweight sub-feature
space attention module (SFSAM), which improves the representational power of the
model by learning different attention feature maps. A wide range of experiments show the
effectiveness of SeedSortNet, which achieves state-of-the-art identification performance
on maize seed and sunflower seed datasets while utilizing fewer parameters and lower
computational complexity. In future research, the number of seed varieties and images
will be further increased to test the performance of these models, and we hope that these
methods can be applied in the seed market.
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ABSTRACT
The emergence of exoskeleton rehabilitation training has brought good news to patients
with limb dysfunction. Rehabilitation robots are used to assist patients with limb reha-
bilitation training and play an essential role in promoting the patient’s sports function
with limbdisease restoring to daily life. In order to improve the rehabilitation treatment,
various studies based on human dynamics and motion mechanisms are still being
conducted to createmore effective rehabilitation training. In this paper, considering the
humanbiologicalmusculoskeletal dynamicsmodel, a humanoid control of robots based
on human gait data collected from normal human gait movements with OpenSim is
investigated. First, the establishment of the musculoskeletal model in OpenSim, inverse
kinematics, and inverse dynamics are introduced. Second, accurate human-like motion
analysis on the three-dimensional motion data obtained in these processes is discussed.
Finally, a classic PD control method combined with the characteristics of the human
motion mechanism is proposed. The method takes the angle values calculated by the
inverse kinematics of the musculoskeletal model as a benchmark, then uses MATLAB
to verify the simulation of the lower extremity exoskeleton robot. The simulation
results show that the flexibility and followability of the method improves the safety
and effectiveness of the lower limb rehabilitation exoskeleton robot for rehabilitation
training. The value of this paper is also to provide theoretical and data support for the
anthropomorphic control of the rehabilitation exoskeleton robot in the future.

Subjects Human-Computer Interaction, Robotics
Keywords Human-gait, Musculoskeletal model, OpenSim, Humanoid control, Lower limb
rehabilitation exoskeleton, Motion capture

INTRODUCTION
Themain causes of limbmotor dysfunction in patients include stroke and limb injury (Sousa
et al., 2011). The sequelae of this injurious seriously affect the quality of life for patients
and their families. Worldwide, there are a large number of patients with limb dysfunction
caused by various accidents (Bai et al., 2019). Meanwhile, the current global population
is facing a very serious aging situation (Fuster, 2017). The number of patients with limb
dysfunction is further increasing with the aging society. The lower limbs play a crucial role
in our lives. The lower limb training helps to expand the scope of daily activities of the
recovered person and reduce the risk of falling. Therefore, in the rehabilitation treatment
of the limbs, the rehabilitation treatment of lower limbs is especially essential. Studies have
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shown that patients with limb motor dysfunction will recover their normal walking ability
after a certain amount of scientific training at an appropriate time after injury (Mekki et al.,
2018; Chen et al., 2016; LI & JIANG, 2010). However, the rehabilitation training work for
patients with limb dysfunction in the later period is heavy, the existing medical staff cannot
complete this huge task. The emergence of rehabilitation exoskeleton provides an effective
solution to solve these social problems (Bernhardt et al., 2017;Coleman et al., 2017), fills the
gap in the number of medical staff, and brings hope to the majority of patients with limb
dysfunction. At present, the exoskeleton robot for lower limb rehabilitation training mostly
uses force/position control or trajectory planning method (Shi et al., 2019; Bernhardt et
al., 2005). Although the existing exoskeleton training process is mostly mechanized rigid
training, the complexity of the human movement process determines that the exoskeleton
is difficult to track the human movement track in the training process. Therefore, the
traditional exoskeleton rehabilitation training cannot effectively meet the needs of patients
with lower limb motor dysfunction.

In order to solve this problem, current researchers have proposed a musculoskeletal
model of human-based on the characteristics of movement mechanisms to improve
the effectiveness of rehabilitation training. The human musculoskeletal system is a
complex non-linear, multi-redundant system, which is difficult for non-human physiology
researchers, then most lower limb rehabilitation exoskeleton robot researchers rarely
analyze the real human gait and human musculoskeletal model. The open-source software
OpenSim developed by Stanford University brings a feasible solution for non-human
physiology researchers. Seth et al. (2018) have jointly developed OpenSim, which can
create a musculoskeletal model and then predict new motions through the model and
perform motion analysis. OpenSim is the software based on computational modeling
and simulation of biomechanical systems (Seth et al., 2018). Based on OpenSim, Guo et
al. (2020) studied the biomechanical characteristics of human lower limbs at different
speeds and different weights, performed gait simulation, and proposed joint torque and
muscle activation during walking (Saul et al., 2015). Space circulation characteristics and
biomechanical characteristics are the main content of gait analysis research. Researchers
employed OpenSim to performmusculoskeletal modeling and analyze the joint kinematics
and muscle force characteristics of gait (Wang et al., 2018). Cardona & Cena (2019) studied
and analyzed the biomechanics of the lower limbs of the human body, and estimated
the kinematics and dynamics parameters of healthy gait and pathological gait. Zhou et al.
(2020) combined the human musculoskeletal model and exoskeleton modeling control,
then conducted simulation research on exoskeleton design and control methods with
humans in the loop (Branson et al., 2010). Humphreys (2019) uses OpenSim to test in
an environment lacking measurement test data and microgravity to generate predictive
kinematics. It is of great significance to study the coupling and synergy between the
exoskeleton and humans. Dembia et al., (2017) employed OpenSim to simulate auxiliary
equipment and reduce the metabolic cost of weight-bearing walking through simulation;
this research will provide help for experimenters in the manufacture of exoskeleton devices.
In the field of human body mechanism analysis and research, OpenSim has been widely
used. However, most of these studies and applications start from the software itself to
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simulate and analyze motion, the results of OpenSim simulation analysis are rarely used
for extended applications in the field of rehabilitation exoskeleton.

Therefore, this paper expands the results of OpenSim simulation analysis and applies
them to lower extremity rehabilitation exoskeleton robots. Starting from the human body
motion mechanism, the human body kinematics analysis is carried out, and a PD control
strategy based on real gait and musculoskeletal model is proposed. The schematic diagram
of the principle is shown in Fig. 1. In this picture, A represents gait data acquisition,
B represents data preprocessing, C represents modeling and analysis, D represents the
controller, E represents the robot. First, this paper uses the NOKOV motion capture
system and force measurement platform to collect normal human gait data, and preprocess
the collected data. Then, the processed gait data was imported into OpenSim, and the
musculoskeletal model of the experimental object was established for human kinematics
and dynamic analysis, moreover obtained the mechanical characteristics of humanmotion.
Finally, the human motion mechanical characteristics are proposed to control the torque
of the lower limb exoskeleton robot based on the PD controller, and the error-free tracking
is achieved by adjusting the controller parameters. This method improves the flexibility of
the exoskeleton robot movement and meets the anthropomorphic design requirements of
rehabilitation training.

The Ethics Committee of the School of Electronic Information, Zhongyuan University
of Technology (approval batch number: ZUTSEI202008-001), approved this research
protocol, and all participating patients signed an informed consent form.

Analysis of the mechanism of human lower limb movement
Human gait data collection
At present, the motion capture system is divided into five categories according to the
principle: mechanical motion capture system (Wu et al., 2005), acoustic motion capture
system, electromagnetic motion capture system (Guo et al., 2011), inertial motion capture
system (Kim & Nussbaum, 2013) and optical motion capture system (Kurihara et al.,
2002; Guerra Filho, 2005; Kirk, O’Brien & Forsyth, 2005). Among them, the optical motion
capture system is divided into two categories: motion capture system based on computer
vision (optical non-calibration) and optical motion capture system based on mark point
(optical calibration).

This paper selected Nokov 3D infrared passive optical motion capture system with
high accuracy and good effect after comparing several existing motion capture systems and
combining with the needs for current research topic. In the scene set up by this system, the
infrared camera is used to fully cover the experimental scene, infrared light is emitted by the
infrared camera array in the process of data collection, and the position information of the
reflective Maker points are captured in the experimental scene. In the process of collecting
gait data, the experimental subject walks in the experimental scene with affixed Maker
points. In order to meet the needs of the research, the experimental platform is equipped
with a three-dimensional force measuring platform, which can synchronously collect the
three-dimensional ground reaction force during the movement of the experimental object.
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Figure 1 The schematic diagram of the principle.
Full-size DOI: 10.7717/peerjcs.657/fig-1

Before collecting experimental data, the deployment of the experimental platform is also
critical. The deployment of the camera position has a fatal impact on the experimental data
(Kurihara et al., 2002). In the experiment, the influences of different camera arrangement
methods on experimental data were tested. It was found that the best data is obtained by
using the approximate circular camera arrangement. This arrangement allows each camera
to maximize its utilization value. In the experiment, the cameras scene is arranged around
the force measuring platform in an oval shape. The calibration origin is positioned as far
as possible in the center of each camera’s field of view by adjusting the orientation of the
cameras. The experimental collection scene is shown in Fig. 2.

Gait data processing
After the data collection is completed, it is preprocessed to ensure the completeness and
accuracy of each frame of data. For missing data points, we had appropriate discarding or
interpolation methods for processing. For severely missing data, the entire group will be
deleted without applying.

The force was collected by three-dimensional measuring platform that is the force
between foot and ground when the experimenter walks. During the process of gait
collection, the force in the vertical direction is the most important force, it reflects the
phenomenon of overweight andweightlessness during the gait cycle. The three-dimensional
force as shown in Fig. 3. It can be found that the force between left foot and right foot with
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Figure 2 The human gait data collection scene.
Full-size DOI: 10.7717/peerjcs.657/fig-2
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Figure 3 Component of plantar force on coronal, sagittal, and vertical axis.
Full-size DOI: 10.7717/peerjcs.657/fig-3

the ground is basically symmetrical on same axis. The data of the force platform is zero
before the foot contacts it. Next, a small fluctuation is formed in the coronal and sagittal
axes at first, then increases to a maximum and gradually decreases to zero. On the vertical
axis, it increases rapidly, forming a bimodal curve similar to M, and then rapidly returns
to zero too.

The acceleration of the left and right joint has certain symmetry and periodicity, as
shown in Fig. 4, it can be seen from the figure that the acceleration from the left leg
joint and the right leg joint can basically coincide with each other in the case of 0.5 s
of translation. During the walking process of the subject, the acceleration of hip joint
points were maintained from 1 m/s2 to 5 m/s2. The acceleration of knee joint points were
maintained from 0 m/s2 to 13 m/s2. The acceleration of ankle joint points were maintained
from 0 m/s2 to 25 m/s2. It can be easily observed that the acceleration at the ankle joint
points is greater than the acceleration at the knee joint points, and the acceleration at
the knee joint points is greater than acceleration at the hip joint points. During walking,
consistent with experience, the further away from the torso, the acceleration of the nodes
greater. Here, a small idea is proposed: based on the acceleration of the joints, a body
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Figure 4 Combined acceleration of joints. (A) The acceleration of hip joint. (B) The acceleration of knee
joint. (C) The acceleration of ankle joint.

Full-size DOI: 10.7717/peerjcs.657/fig-4

movement comfort function is designed to evaluate the patients’ comfort in the process of
lower limb exoskeleton rehabilitation training. This will be a research direction in the next
stage of this subject.

Musculoskeletal modeling
In order to build musculoskeletal models and obtain relatively accurate biomechanical
information, several common musculoskeletal modeling and computation software on
the market, such as LIFEMOD (Huynh et al., 2015), OpenSim (Seth et al., 2011), Anybody
(Damsgaard et al., 2006), SIMM software, were compared in the research process. The
comparison results are shown in Table 1. It was found that OpenSim meets the needs
of this study by comparison. It is an open sources free software developed by Stanford
University. OpenSim calculates the motion process based on biomechanical knowledge
and combining forward kinematics and inverse kinematics. OpenSim can be applied to
human musculoskeletal model development, motion simulation, motion analysis, muscle
strength calculation, normal and pathological gait analysis, etc.

The first reason for using OpenSim modeling: rigid exoskeleton rehabilitation robot
is a typical multi-input and multi-output complex mechanical system with nonlinear,
strong coupling and other uncertain factors. There is a great inaccuracy when modeling
the exoskeleton using a traditional linkage model. These inaccuracies are mainly reflected
in the following aspects:
1. Mass moment;
2. Inertial matrix;
3. Changes in stiffness and damping (in the process of human–computer interaction);
4. Static friction force of the robot.

The second reason for using OpenSim modeling: compared with the exoskeleton robot,
the musculoskeletal system of the human body is a more complex system with multiple
redundancy, nonlinear and strong coupling. The most basic way of human movement is to
pull the bones around the joints throughmuscle contraction to achieve the purpose of limb
movement. Compared with the traditional connecting rod modeling, the musculoskeletal
system modeling is more in line with the movement and texture characteristics of human
body, and can better simulate somemovements of human body, which is closer to the actual
movement characteristics of human body. Using musculoskeletal model for simulation
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Table 1 Musculoskeletal modeling software comparison.

Software Main Features

LifeMOD -Commercial: Yes.
-Import Simulink from another: CAD, CATIA, Pro/E,
SolidWorks, Unigraphics.
-Inverse Kinematics utility.
-Inverse Dynamics utility.
-Allows simulations with implants.

OpenSim -Commercial: NO (free).
-Simulink Export: No native.
-Muscle-driven forward dynamic (from data recorded).
-Inverse Dynamics utility.
-Inverse kinematic simulation.
-Allows simulations with implants.

Anybody -Commercial: Yes.
-Simulink Export: No native.
-Friction forces modeling.
-Inverse Dynamics utility.
-Allows simulations with implants.

SIMM -Commercial: Yes.
-Simulink Export: No native.
-Real-time viewing.
-Bone deformation modeling.
-Inverse kinematics utility.

will get more accurate and reliable simulation results. Considering comprehensively, this
paper chooses the musculoskeletal modeling method which is closer to the human body
for data analysis and processing.

The model selected in this paper is based on the Gait 2354 model, which is from the
OpenSim open-source community. This is a three-dimensional model with 23-degrees of
freedom of the human musculoskeletal system. The model embodies the achievements of
many predecessors. First, the original model is created by Thelen et al. The model uses
Delp et al.’s definition of lower extremity joints (Delp et al., 1990), Anderson and Pandy’s
low back joints and anthropometry (Anderson & Pandy, 1999; Anderson & Pandy, 2001),
and Yamaguchi and Zajac’s plane knee model (Yamaguchi & Zajac, 1989a). The Gait2392
model features 92 muscle actuators to represent 76 muscles in the lower extremities and
torso. For the Gait2354model, the number ofmuscles was reduced by Anderson to improve
simulation speed for demonstrations and educational purposes. Seth removed the patella to
avoid kinematic constraints; insertions of the quadriceps are handled with moving points
in the tibia frame.

Musculoskeletal model scaling
In this paper, the open-source musculoskeletal model was scaled to obtain the exclusive
model equivalent to the experimental object. In order to ensure the accuracy of model

Yu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.657 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.657


+LSB/

+LSB5
+LS

.QHHB5.QHHB/

$QNB5

$QNB5

Figure 5 Markers.
Full-size DOI: 10.7717/peerjcs.657/fig-5

scaling, the model was scaled several times. Finally, the accuracy of the model with a scaling
error of less than one-thousandth is achieved.

Model scaling allows the open sources model to match our experimental subjects as
closely as possible. In the scaling process, static data collected are mainly used in this paper
(the experimental data collected while the experimental object is standing still). Before
scaling the model, Maker points were added at the appropriate position on the model in
accordance with the experimental object. As shown in Fig. 5. Meanwhile, these Maker
points were connected to the model bones. In order to ensure the scaled model more
accurate, the collected action data are processed in this paper. Through calculation, the
left and right width of the pelvis and the length of the left thigh, left calf, right thigh and
right calf were obtained(as shown in Table 2), where the mass and length are calculated
through Zatsiorsky (Vaughan, Andrews & Hay, 1982) and Harless study (Drillis, Contini &
Bluestein, 1964). Finally, the length of these body segments in the model was built.

All the above body segment lengths were obtained from the processing of experimental
data, and the measured body segment lengths were averaged. The comparison shows that
the data is relatively accurate. In this scaling process, we preserve mass distribution during
scale, and change the scale weight of the makers to get a more accurate model.

Inverse Kinematics (IK)
Forward kinematics calculate the final position of the model by giving the initial position,
velocity and acceleration of the model. The IK are opposite to the forward dynamics. IK
figures out the motion process of the model based on the given position, including the
change of physical quantity such as velocity and acceleration in this process.

The IK uses the motion capture data collected in the experiment (walk.trc). And the
internal algorithm of the software was used for biological simulation, and the inverse
solution was used to calculate the joint angle, pelvis tilt, et al. Among the lower limb
movements of the human body, the hip joint movement is most complicated. The hip joint
has three degrees of freedom. Therefore, the leg will perform three axial movements on the
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Table 2 Subject’s physical information.

Body segment Thigh(L) Calf(L) Thigh(R) Calf(R)

Origin model segment mass (Kg) 9.3014 3.7075 9.3014 3.7075
Scaled model segment mass (Kg) 8.0441 3.2063 8.0441 3.2063
Body mass by Harless study (Kg) 7.67 2.925 7.67 2.925
Segment length by experiment (mm) 458.17 395.12 456.36 394.22
Length by Harless study (mm) 438.48 394.98 438.48 394.98
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Figure 6 The adduction, flexion and rotation of hip joint.
Full-size DOI: 10.7717/peerjcs.657/fig-6

hip joint, including flexion and extension of the hip joint on the sagittal plane, adduction
and abduction on the coronal plane, and internal rotation and external rotation direction
of the thigh. During the gait cycle, the hip joint angles change as shown in Fig. 6. The hip
joint of flexion is the movement in the sagittal plane, and its range of change is stable at
0∼ 0.8 rad. This movement change is the leading and effective movement of the hip joint
during the gait, and the movement in this direction will drive the body to move forward.
The hip joint of adduction changes smoothly in the gait, with only a slight fluctuation. The
hip joint of rotation includes internal rotation and external rotation of the thigh during
the gait. It can be seen that the data in this part has strong characteristics, and the range of
variation is stable at −0.6∼ 0 rad. The hip joint of adduction and the hip joint of rotation
have more personal characteristics related to personal habits and leg health conditions.
It is also a key factor in judging whether the gait is abnormal. Through IK, the collected
motion capture data can be matched with the calibration data of the experimental object,
and the motion simulation process of the model can be optimized. The IK tool calculates
universal coordinate values for each time step (frame) of the movement. Then, the model is
positioned in the ‘‘best match’’ pose of the experimental marker time step. In other words,
mark points in the collected motion process are matched with the motion capture data,
and the weighted square error of the mark points and motion capture data is minimized.
The law of weighted least squares problem during IK solved by the function:

min
q




∑

i∈markers

wi ‖ xiexp−xi(q)‖2+
∑

j∈unprescribed−coords

ωj(qj exp−qj)2


 (1)
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Where, q is the vector of the generalized coordinates solved, Xi
exp is the experimental

location of mark i, Xi(q) is the position of the corresponding mark points in the model
(depending on the coordinate value), qj exp is the experimental value of coordinate j, and
set their experimental values to the specified coordinates.

The comparison between the knee angle analyzed by Cortex data acquisition software
and the knee angle analyzed by OpenSim musculoskeletal simulation software is shown
in Fig. 7. The data in the figures represents the gait information of 1.5 cycles. The overall
trend of knee joint angle obtained by two methods are similar and can be seen from the
figures. However, there are still some differences. It can be seen that the variation range of
knee joint angle obtained by using musculoskeletal simulation software OpenSim is larger
and the variation trend is more stable. The reason of this phenomenon maybe is the Cortex
software get the angles just by simple calculating with the collected position data. OpenSim
combines the characteristics of musculoskeletal model in the calculation of joint angles, so
the joint angles obtained by OpenSim are better than Cortex.

Inverse dynamics (ID)
The ID problem refers to: given the position q, velocity q̇ and acceleration ¨q of each joint
of the robot at a certain moment, calculate the driving force (include: states or motion)
imposed on each joint at this time. The ID can be solved by the Newton-Euler equation or
the Lagrange equation.

Dynamics is the study of motion, the forces and torques that cause motion. The purpose
of ID is to estimate the forces and torques required to produce a particular motion, and
the results also used to predict how muscles contribute to motion. In order to calculate
the forces and moments, the system’s equations of motion need to be solved iteratively.
The motion equations are derived from the motion description and the mass property
of the model. In the solution process, the IK is employed to calculate the joint angle
and the ground reaction force during the experiment. And combined with the dynamic
equilibrium conditions and boundary conditions, the net forces and moments at each joint
are obtained.

When solving the ID problem, the data of motion and force measuring platform are
needed to ensure that the number of equations of motion more than unknowns (degrees
of freedom), which turns the problem into a statically indeterminate problem. The error
of experimental motion data and the inaccuracy of the model will lead to Newton’s second
law F=m*a invalid. In order to solve this dynamic discontinuity problem, residual forces
and torques are introduced into a specific section of the model. The following equation is
established, which relates the ground reaction moment to the residual moment. Where,−→
F exp is the ground reaction moment and

−→
F residual is the residual moment.

−→
F exp+−→

F residual =m ·−→a (2)

Inverse_Dynamics.sto: is generated by inverse kinetic operations, including time series,
net joint moments of each bone joint, etc.

The net joints acting torque of the hip joints in three motion states are shown in
Fig. 8. The net joint acting moment of hip joint is same to the angle of the hip joint,
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Figure 7 The angle of knee with Cortex & OpenSim. (A) The angle of left knee. (B) The angle of right
knee.
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Figure 8 The torque of knee joint fromOpenSim.
Full-size DOI: 10.7717/peerjcs.657/fig-8

including adduction, flexion and rotation. Torque is drives of the body segments, therefore
corresponds to the joint angles of the hip joint. The net joint torque of the knee joint is
the joint torque connecting the thigh and the calf, which is significant in the research of
exoskeleton rehabilitation robots of lower limbs.

CONTROL SYSTEM DESIGN
PD controller
The PD controller is one of the most widely used and effective methods in the field
of robotics. As we all know, a PD controller is sufficient to stabilize any kind of rigid
manipulator near the reference position. In particular, even when the inertia and friction
parameters of the robot are unknown, it can be guaranteed to be asymptotically stable.
Under the premise of ignoring friction and other disturbances,Kelly (1993) developed a PD
controller with adaptive desired gravity compensation and demonstrated the closed-loop
global asymptotically stability that obviates LaSalle’s theorem. In order for the robot
to walk like a human, the PD controller is employed to accurately control the robot’s
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posture and gait, and the stability of the robot is maintained through the feedback system.
Putri & Machbub (2018) designed a PD controller with Center of Mass (COM) as system
feedback, and verified the effectiveness of PD controller on the Bioloid GP under uneven
environments with many obstacles. Hu, Wang & Wu, (2021) proposed a robust adaptive
PD-like control based on healthy human gait data. Zhou et al. (2021) proposed a trajectory
deformation algorithm and chose a PD position controller to ensure the trajectory tracking
effect. Ali et al., (2018) used a fuzzy PID-based position control method in the design of the
upper limb rehabilitation robot system to solved the robot’s precise position/force control
under the imprecise model. Han, Wang & Tian (2020) used intelligent PD controllers for
the motion control of the lower extremity rehabilitation exoskeleton. This method uses
a linear state observer to compensate for the control input, solves the inaccuracy of the
exoskeleton robot model and the interaction between the human and the exoskeleton. In
reality, the robot is a multi-degree-of-freedom, mutually coupled nonlinear system, the
performance of robot system depends highly on the availability of high quality differential
signal based on the non-continuous measured position signal.

Dynamics
Fourier is a rigid body robot, in the absence of friction and other disturbances, the dynamics
of a serial n-link rigid robot can be written as:

M (q)q̈+D(q,q̇)q̇+G(q)= τ +τOpenSim. (3)

We simplify Fourier to a 2-link rigid robot, where, q is the 2×1 vector of joint angle,
τ is the 2×1 vector of joint torques, τOpenSim is the 2×1 vector of joint torques from
the OpenSim software, M (q) is the 2×2 symmetric positive definite manipulator inertia
matrix, D(q,q̇) is the 2×1 coriolis force and centrifugal force matrix, G(q) is the 2×1
gravity matrix. In this paper, τOpenSim as a reference torque input to the controller, to realize
the anthropomorphic torque output of the exoskeleton robot.

The PD control law is given as flowing:

τ =Kdė +Kpe−τOpenSim (4)

where, Kd and Kp are the 2×2 symmetric positive definite matrices, e = qd −q, qd is the
desired joint angle. The τOpenSim is a bounded matrix.

Tmin ≤
∥∥τOpenSim

∥∥≤Tmax.

Eqs. (3) and (4) imply.

M (q)(q̈d − q̈)+D(q,q̇)(q̇d − q̇)+Kdė +Kpe = 0. (5)

Then the M (q)ë +D(q,q̇)ė +Kpe = −Kdė is obtained. Considering the candidate
Lyapunov function,

V = 1
2
ėT M (q)ė + 1

2
ėT Kpė (6)
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Eq. (6) is position definite, and the time derivative of the function,

V̇ = ėT Më + 1
2
ėT Ṁ (q)ė + ėT Kpe. (7)

There is an oblique symmetry feature: Ṁ (q)-2D(q,q̇)= 0. Substituting the condition
into Eq. (5), get

V̇ = ėT (Më +Dė +Kpe)= −ėT Kd ė ≤ 0. (8)

Then, the stability of design control system can be guaranteed.

Results
The simulation is carried out in MATLAB-Simulink, and the results are shown in Figs. 9
and 10. Figures 9A, 9C and 10A are the joints angle tracking and tracking error of OpenSim
combined with PD controller, respectively. Figures 9B, 9D and 10B are the joints angle
tracking and tracking error of the PD controller, respectively. Comparing Figs. 9A and 9B,
it can be found that the PD controller combined with OpenSim has a better tracking effect,
after the tracking, error-free tracking can be achieved, and the controller that only uses the
PD control can clearly found that there is still an error in the peak position of the gait angle
in the later stage of the tracking. In themethod proposed in this paper, the joint torque from
OpenSim plays a good role in compensating for the control of the controller. Comparing
Figs. 10A and 10B, we can be found that the PD controller combined with OpenSim has
a better tracking effect, the tracking error is smoother with only small fluctuations, and
the stability is higher. The patient can enter the rehabilitation training comfortably, and
achieve the safety and comfort of the rehabilitation training.

The parameter of PD controller, such as: Kp, Kd. Kp = diag(150, 150), Kd = diag(120,
120). The performance indexes of the two controllers designed are shown in Table 3.

The RMSE, ISE, and ITSE indicated that the two controllers are almost the same,
suggesting that they have faster response speed and smaller oscillation. In terms of the
properties of IAE and ITAE, the controller with OpenSim output torque is slightly
better than the PD controller’s transient response and the transient response oscillation
is smaller.

CONCLUSIONS
The collected real human gait data combines with the humanmusculoskeletal model in this
paper, then obtains human motion characteristics by inverse kinematics analysis. These
motion characteristics were employed to design the controller and verify it in Simulink.
The simulation results show that this method is more flexible and anthropomorphic in the
exoskeleton robot control.

Research innovation points summary shown as follows:
(1) The human biological musculoskeletal dynamics model was identified using

OpenSim and the real human gait of the experimental data source. Combining the human
lower limb movement characteristics extracted from the gait data with the musculoskeletal
model established by OpenSim, the musculoskeletal model is based on the physiological

Yu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.657 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.657


� ��� � ��� � ��� �
7LPH��V�

����

�

���

���

+
LS
�DQ

JO
H�W
UD
FN
LQ
J�
�U
DG
�

'HVLUHG�WUDMHFWRU\
7UDFNLQJ�WUDMHFWRU\

� ��� � ��� � ��� �
7LPH��V�

��

����

�

���

.
QH
H�D

QJ
OH
�WU
DF
NL
QJ

��U
DG
�

'HVLUHG�WUDMHFWRU\
7UDFNLQJ�WUDMHFWRU\

� ��� � ��� � ��� �
7LPH��V�

����

����

�

���

���

+
LS
�DQ

JO
H�W
UD
FN
LQ
J�
�U
DG
�

'HVLUHG�WUDMHFWRU\
7UDFNLQJ�WUDMHFWRU\

� ��� � ��� � ��� �
7LPH��V�

��

����

�

���

.
QH
H�
DQ
JO
H�W
UD
FN
LQ
J�
�U
DG
�

'HVLUHG�WUDMHFWRU\
7UDFNLQJ�WUDMHFWRU\

$ %

& '

Figure 9 (A) The hip angle track with OpenSim. (B) The hip angle track with link rodmodel. (C) The
knee angle track with OpenSim. (D) The knee angle track with link rodmodel.
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Figure 10 (A) The angle track error with OpenSim. (B) The angle track error with link rodmodel.
Full-size DOI: 10.7717/peerjcs.657/fig-10

Table 3 The performance indexes of the two controllers.

OpenSim with PD controller PD controller only

ERROR Hip error Knee error Hip error Knee error

RMSE 1.7×10−4 1.6×10−4 1.4×10−4 1.5×10−4

ISE 0.010 0.009 0.008 0.009
ITSE 0.003 0.003 0.004 0.003
IAE 0.1219 0.1164 0.1105 0.1100
ITAE 0.0845 0.0790 0.1076 0.0813

characteristics of the human body (muscle and tendon characteristics, skeletal and tendon
connection structure, nervous system, etc.). This method will obtain more accurate gait
kinematics and gait dynamics data. Compared with the connecting rod model, this model
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has a better human-like design, so the precision and accuracy of the model are better than
ever.

(2) The humanoid control of robots based on human gait data of normal human gait
movements was discussed. The PD controller design and the simulation results based on
experimental were analyzed. Experimental results have shown that the control strategy
based on OpenSim and PD controller is more in line with the characteristics of human
kinematics and physiology. Compared with only using the PD controller, this method
has better trajectory tracking effect, faster adjustment time, and more comfortable patient
rehabilitation experience.
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ABSTRACT
At present, industrial robotics focuses more on motion control and vision, whereas
humanoid service robotics (HSRs) are increasingly being investigated and researched
in the field of speech interaction. The problem and quality of human-robot
interaction (HRI) has become a widely debated topic in academia. Especially when
HSRs are applied in the hospitality industry, some researchers believe that the
current HRI model is not well adapted to the complex social environment. HSRs
generally lack the ability to accurately recognize human intentions and understand
social scenarios. This study proposes a novel interactive framework suitable for
HSRs. The proposed framework is grounded on the novel integration of Trevarthen’s
(2001) companionship theory and neural image captioning (NIC) generation
algorithm. By integrating image-to-natural interactivity generation and
communicating with the environment to better interact with the stakeholder, thereby
changing from interaction to a bionic-companionship. Compared to previous
research a novel interactive system is developed based on the bionic-companionship
framework. The humanoid service robot was integrated with the system to
conduct preliminary tests. The results show that the interactive system based on the
bionic-companionship framework can help the service humanoid robot to effectively
respond to changes in the interactive environment, for example give different
responses to the same character in different scenes.

Subjects Human-Computer Interaction, Artificial Intelligence, Robotics
Keywords Humanoid robotics, Human-robot interaction, Social robotics

INTRODUCTION
Humanoid service robots (HSRs) have seen a sharp rise in adoption recently and are seen
as one of the major technologies that will drive the service industries in the next decade
(Harris, Kimson & Schwedel, 2018). An increasing number of researchers are committed
to investigating HSRs to help humans complete repetitive or high-risk service and
interactive tasks such as serving patients with infectious diseases, delivering meals and so
on. Delivery robots, concierge robots, and chat robots have been increasingly used by
travel and hospitality companies (Ivanov, 2019). Although the contribution of these
achievements mainly comes from the rapid development of robotics engineering, Ivanov
et al. (2019) indicated that future research focus will gradually shift from robotics
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engineering to human-robot interaction (HRI), thus opening up interdisciplinary research
directions for researchers.

In the early days, Fong, Thorpe & Baur (2003) proposed that in order to make robots
perform better, the robot needs to be able to use human skills (perception, cognition, etc.)
and benefit from human advice and expertise. This means that robots that rely solely
on self-determination have limitations in performing tasks. The authors further propose
that the collaborative work between humans and robots will be able to break this
constraint, and research on human-robot interaction has begun to emerge. Fong, Thorpe &
Baur (2003) believe that to build a collaborative control system and complete human-robot
interaction, four key problems must be solved. (1) The robot must be able to detect
limitations (what can be done and what humans can do), determine whether to seek help,
and identify when it needs to be resolved. (2) The robot must be self-reliant and secure.
(3) The system must support dialog. That is, robots and humans need to be able to
communicate with each other effectively. However, dialog is restricted at present. Through
collaborative control, dialog should be two-way and require a richer vocabulary. (4) The
system must be adaptive. Although most of the current humanoid service robots
already support dialog and can complete simple interactive tasks, as propounded in the
research, such dialog in the present time remains limited and “inhuman.” In the process of
interacting with robots, humans always determine the state of the robot (the position of the
robot or the action the robot is doing) through vision, and then communicate with the
robot through a dialog system. However, HSR cannot perform this yet as they do not seem
to fully satisfy the two-way nature of dialog. Therefore, this research responds to the
current gap and attempts to differ from the current HRI research. This research attempts
to introduce deep learning into the existing dialog system of HSR, thus advancing the field.

With the continuous development of humanoid robots, more and more humanoid
robots are used in the service industry, especially the hospitality industry. Human-Robot
Interaction (HRI) has become a hot potato by more and more researchers (Yang & Chew,
2020). However, with the deepening of research, some researchers found that when
humans interact with humanoid service robots (HSRs), humans hope that HSRs should
have the ability and interest to interact with the dynamic thoughts and enthusiasm of
the partner's relationship, and can recognize the environment, blended with what others
think is meaningful and the emotions to express sympathy (Yang & Chew, 2020). This
coincides with Trevarthen’s (2001) companionship theory, so the concept of human robot
companion (HRC) was proposed this research. The earlier concept of the robot
companion is mentioned by Dautenhahn et al. (2005): HSRs need to have a high degree of
awareness and sensitivity to social environment. Through the review of the above
literatures, it is proposed to establish an interactive and companion framework for HSRs
using deep learning and neural image caption generation, thus advance the current field
of HSRs to tackle with bionic-interactive tasks of the service industry and further evolve
from conventional HRI to Human and Robot Companion (HRC) (See Table 1).

This study proposes that the introduction of visual data into the current HRI model of
HSRs enables HSRs to have a high level of sensitivity to the social dynamic environment
while interacting with humans, thereby enhancing the current HRI model to HRC. With
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the continuous development of deep learning, some researchers have recently realized the
transformation of static pictures or videos from conventional camera input into text
descriptions (Li et al., 2020; Hu et al., 2020; Luo, Hsu & Ye, 2019). This deep learning
algorithm model is called neural image capturing (NIC). This research attempts to adapt
and integrate NIC into HSRs and propose a novel framework (bionic-companionship
framework) to enhance the traditional HRI experience. This framework aims to improve the
current HRI interaction mode in the field of HSRs to a higher level of HRC (Yang & Chew,
2021). The bionics in this research refers to the humanoid service robot imitating all the
tastes of life, trying to adapt to the seven emotions of ancient human nature (joy, anger,
sadness, fear, love, disgust, liking) and six biological wills (life, death, eyes, ears, mouth, nose)
(Chew et al., 2021). The system proposed in this study combines visual intelligence and
Speech Intelligence, and imitates human behavior in social activities, which is in line with the

Table 1 Scenario based comparison for HRI and HRC.

Scenario: HRI HRC

Scenario 1: Hospitality:
The enhancement from HRI to HRC:
(1) Compared with HRI, robots in HRC can
recognize the environment (luggage) and
changes in customers’ appearance (red shirt),
which is in line with the proposed concept of
companion should become dynamic in the
theory of companionship.
(2) More enthusiastic and bionic interaction
capabilities (automatically detect whether they
are regular customers, and greet
enthusiastically).
(3) The robot in HRC remember the
customers’ past orders and provide meal
recommendation for well-being.

When you enter a hotel, you see a reception area
dominated by robots. When you approach the
reception area, the HSR will say “Welcome to
Hotel XYZ, please follow the instructions to
check-in on my display screen”. After
completing the check-in, the robot will tell
you the room number and issue you a room
card, you go to your room, change a suit and
prepare to go downstairs to eat. When you go
back to the reception, the robot says ‘welcome,
please follow the instructions to place an order
on my display’. You choose a few dishes that
look good on the screen of the robot, but when
the food comes up you don't seem to be
satisfied with the taste…

When you enter a hotel, you can a reception
area thoughtfully served by robots. The robots
also see you and wave to you, ‘Welcome Jack,
you have a nice luggage, I can help you to
check-in. What else can I do for you?’After
completing the check-in, the robot will tell
you the room number and issues you a room
card. You go to your room and change to a red
shirt to go downstairs to eat. When you go
back to the reception, the robot says,
“Welcome Jack, you wear nice red shirt, what
can I do for you?” You choose a few dishes
that look good on the robot’s screen, but the
robot tells you that ‘According to your past
order and diet preferences, these meals may
not be suitable for you. Feel free to change it to
a less cholesterol dishes with special house
promotion and I recommend you to take this
quality wine as a treat to have a healthy eating
while enjoying your stay with us.’

Scenario 2: Health care:
(1) The enhancement from HRI to HRC:
Robots have dynamic thinking and real-time
neural image captioning ability: able to deal
with emergencies and a quick decision making
from what it sees the environment in real-time.
(2) Robots has been improved from
conventional smart Q&A and interactions to
new concept of bionic companionship.

You bought a robot at home to monitor your
health. The robot obtains some of your health
indicators (such as temperature, blood
pressure, etc.) through some external devices.
When there is a problem with your indicators,
the robot can give you corresponding
suggestions or help you contact a doctor. A
total of 1 day you suddenly fainted at home for
some reasons, but because you did not aim at
the detection device connected to the robot,
the robot did not find your condition.
Fortunately, your neighbor found you fainted
at home. . .

You bought a home care robot to monitor your
health. The robot obtains some of your health
indicators (such as pulses, blood pressure,
etc.) through some external devices. When
there is a problem with your indicators, the
robot can give you corresponding suggestions
or help you contact a doctor. A total of 1 day
you suddenly fainted at home for some
reason. The robot discovered your real-time
condition through the deep learning vision
system and contacted the your family member
or hospital in time, subject to what the robot
sees, e.g., fainted human with lots of blood or
motion (call hospital for emergency); fainted
human with conscious and free speech (call
family members).

Yang et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.674 3/20

http://dx.doi.org/10.7717/peerj-cs.674
https://peerj.com/computer-science/


concept of robot bionics proposed by researchers such as Chew et al. (2021). Therefore, this
study believes that the proposed system is a bionic system.

RELATED WORKS
With the continuous development of HRI research, industrial robots have been able to
interact with humans accurately and self-adaptively. Some advanced control systems
(Zhang, Hu & Gow, 2020) and algorithms (Tang, Zhang & Hu, 2020) have been proposed
as Industrial robots provide reliable support for completing interactive tasks in an
industrial environment. However, as HSRs began to enter the service industry, some
research cases began to discover that there are still problems with the interaction of HSRs
in the social environment. Caleb-Solly et al. (2018) believed that users can also help robots
when robots help users; meanwhile, users can give feedback to optimize the system.
The feedback reflects not only the optimization of the robot system but also the satisfaction
of customers. Chung & Cakmak (2018) study indicated that hotels in the hospitality
industry want to collect customer feedback in real-time to immediately disseminate
positive feedback and respond to unsatisfactory customers while they are still on the scene.
Guests want to inform their experience without affecting their privacy. Stakeholders in the
hospitality industry hope that intelligent robots can interact more with users. Besides,
Rodriguez-Lizundia et al. (2015) concluded that the optimal distance between users and
robots is 69.58 cm. Specifically, interaction with a certain greeting mode can attract users to
maintain a longer interaction time; robots with the active search are more attractive to
participants. The interaction time is longer than that of passively searching robots,
suggesting that robots should be designed to keep at a certain distance from humans and
consider adding the ability to allow robots to actively identify customers and attract them.

Research suggests that the current interactive system used by HSRs lacks the ability
to process and adapt to dynamic social environments. The dynamic social environment
here refers to the same human behavior and language often expressing different meanings
in different social situations, such as In different situations, the handshake may require
two completely different interactive messages to respond. Therefore, this research proposes
the concept of HRC to develop a new interactive mode to solve the current problems
faced by HRI in the hospitality industry. For a more detailed comparison of HRI and HRC,
please refer to the video in the appendix link (https://youtu.be/fZmV4MKeYtQ).

Review of neural image captioning
The challenge of generating natural language descriptions from visual data has been
extensively researched in the field of computer vision. However, early research has mainly
focused on generating natural language descriptions from video-type visual data (Gerber &
Nagel, 1996; Mitchell et al., 2012). These systems convert complex visual data into
natural languages using rule-based systems. However, because the rules are artificially
designed, these systems are sufficiently robust, bionic, and have been shown to be
beneficial in limited applications such as traffic scenarios (Vinyals et al., 2015). In the past
decade, various researchers, inspired by the successful use of sequence-to-sequence
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training with neural networks for machine translation, proposed a method for generating
image descriptions based on recurrent neural networks (RNNs) (Cho et al., 2014;
Sutskever, Vinyals & Le, 2014). In fact, this method of replacing the encoder in the
encoder-decoder framework in machine translation with image features transforms the
original complex task of generating image data caption into a simple process of
“translating” the image into a sentence (Cho et al., 2014). Furthermore, Donahue et al.
(2014) used long short-term memory (LSTM) for end-to-end large-scale visual learning
processes. In addition to images, Donahue et al. (2014) also applied LSTM to videos,
allowing their models to generate video descriptions. Vinyals et al. (2015) and Kiros,
Salahutdinov & Zemel (2014) initially proposed the structure of a currently popular neural
image generation algorithm based on the combination of a convolutional neural network
(CNN) image recognition model and a natural language processing (NLP) structured
model. Moreover, the neural image captioning algorithm based on the attention
mechanism has also attracted extensive attention in the field of computer vision. Denil
et al. (2012) proposed a real-time target tracking and attention recognition model driven
by sight data. Tang, Srivastava & Salakhutdinov (2014) proposed an attention-generation
model based on deep learning. From the perspective of visual neuroscience, the model
requires object-centric data collection for model generation. Subsequently, Mnih et al.
(2014) proposed a new recurrent neural network model, which can adaptively select
specific areas or locations to extract information from images or videos and process the
selected area at high resolution. As the algorithm has increasingly mature, the application
of the algorithm in related fields has also been breaking through recently, such as the
caption generation of car images (Chen, He & Fan, 2017), the description generation of
facial expressions (Kuznetsova et al., 2014), and educational NAO robots driven by image
caption generation for video Q&A games for children’s education (Kim et al., 2015).
Recent research on image caption generation also shows that the accuracy and reliability of
the technology have increased (Ding et al., 2019). In addition, reinforcement learning
to automatically correct image caption generation networks have also been proposed
(Fidler, 2017). These deep learning–based studies have undoubtedly laid a foundation for
the possible NIC integration with HSRs as proposed in this study. The novel integration
led to the possibility for humanoid robots to interact with humans while recognizing
the social environment in real time, thereby improving the interactive service quality of
the HSRs.

Neural image caption generation algorithm ‘crash into’ robot
An increasing number of studies have been conducted on HRI combined with image
caption generation algorithm. Kim et al. (2015) used the structure of a convolutional neural
network (CNN) combined with RNN + deep concept hierarchies (DCH) to design and
develop an educational intelligent humanoid robot system for play video games with
children. In this study, CNNwas used to extract and pre-process cartoons with educational
features, and RNN and DCH were used to convert the collected video features into Q&A
about cartoons. During the game, after watching the same cartoon, the child and the
robot ask and answer questions based on the content of the cartoon. The research results
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show that such a system can interact effectively with children. However, for HRIs, such
simple and limited-structured Q&A conditions cannot satisfy all the interaction scenarios
required. Cascianelli et al. (2018) used a gull-gated recurrent unit (GRU) encoder-decoder
architecture to develop a human-robot interface that provides interactive services for
service robots. This research solves a problem called natural language video description
(NLVD). The authors also compared the performance when using LSTM and GRU with
two different algorithms to solve these problems. They demonstrated that the GRU
algorithm runs faster and consumes less memory. This type of model may be more
suitable for HSRs. Although the research model is competitive on public datasets, the
experimental results on the designed datasets show that the model suffers from significant
overfitting. This proves that in the actual model training process, a specific training
dataset for HSR interaction should be established, and other methods (such as transfer
learning) should be considered to improve the generalization ability of the model for
interactive tasks. Luo et al. (2019) created a description template to add various image
features collected by the robot, such as face recognition and expression, to the generated
description. Compared with the previous models, their interaction is slightly more natural
and closer to the human description. However, Luo et al. (2019) use the model to
provide limited services to industry managers, hard to generalize, and not for developing
an entire HRI framework.

Like the research on robot vision language, research on robot vision action is in its
infancy. Yamada et al. (2016) used RNNs to enable robots to learn commands online from
humans and respond with corresponding behaviors. This research furthermore provides
a reference and direction for humanoid robots to use deep learning to obtain online
learning capabilities for human commands. Inspired by the above study, the rationale and
hypothesis proposed in the present research are that the description generated by the
neural image captions can drive HSRs to perform appropriate behaviors, and HSRs can even
obtain online learning capabilities of interacting with surrounding people through studying
and analyzing social environments. Tremblay et al. (2018) and Nguyen et al. (2018)
believe that non-experts often lack the rationality of task descriptions when issuing
instructions to robots. They use deep learning to allow robots to automatically generate
human-readable instructions’ descriptions according to the surrounding social environment.
In addition, Nguyen et al. (2018) also used visual data to make humanoid robots imitate and
learn human actions under corresponding commands so that the robot can learn how to
complete the corresponding tasks only through visual data; however, social robots cannot
complete precise control of movements when they imitate movements of visual data.

CONTRIBUTION TO THE KNOWLEDGE: THE BIONIC-
COMPANIONSHIP FRAMEWORK WITH NIC FOR HSRS
The contribution of the present study is the novel investigation and design of the bionic-
companionship framework for HSRs, adapting and integrating neural image caption
generation algorithms and bionic humanoid robots, to be validated in a lab-controlled
environment and real-life exploration. The newHRC framework is anticipated to enhance HRI
to reach a new state, making it possible for HSRs to become bionic companions of humans.
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This study proposes adapting and integrating deep learning techniques to one of the
world’s most advanced HSRs so that robots can autonomously and in a timely fashion
convert pictures or data information captured by robotic visions and sensors into texts
or sentences in order to respond and communicate more naturally with humans. The
conceptual model of the proposed system consists of various modules, as shown in Figs. 1,
2. The contributions of this research are summarized as follows:

1. In order to solve the current problems of HSRs in the hospitality industry, a new
interactive concept-HRC is proposed.

2. A novel bionic interaction framework is designed based on the proposed HRC.

3. A system that can be used on HSRs is developed based on the bionic interaction
framework, and the system has been tested and verified. The preliminary results prove
that the system can enable HSRs to handle dynamic social environments.

Humanoid service robot used in research
The design and investigation of this HRC framework involves using the Canbot U05E
humanoid robot (see Fig. 1 for the high-level design, Figs. 2–5 for further details)
(CANBOT, 2020). The robot’s 22-degree-of-freedom motion joints enable it to perform a

Figure 1 HSR capabilities with the proposed high-level of HRC conceptual model.
Full-size DOI: 10.7717/peerj-cs.674/fig-1
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variety of simulated movements, such as raising the head, turning the head, raising the
arm, shaking the crank, shaking hands, leaning back, walking, and turning, and based on
the proposed framework, it can acquire natural human behaviors and, as a result,
efficiently interact with humans. In addition, Canbot U05E’s advanced vision system and
sensors can collect more complete environmental data for the proposed design and make

Figure 2 Bionic-companionship framework design. Full-size DOI: 10.7717/peerj-cs.674/fig-2

Figure 3 Neural image captioning model structure for HSR.
Full-size DOI: 10.7717/peerj-cs.674/fig-3
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the novel framework more robust. The robot is designed to imitate the human’s seven
senses, providing strong support for the concept and implementation of the bionic partner
designed in this study.

Bionic-companionship framework
In this study, we review the previous works on this topic and research gaps in the literature
and describe a novel humanoid service robot and human interaction framework with
neural image subtitles as its core (details are shown in Fig. 2). The framework uses the
structure of the NIC algorithm to better realize the interaction of HSRs from HRI to
the direction of bionic-companionship. According to the initial descriptions of robot
companions, as in the studies by Turkle (2006) and (Kim et al., 2015), the proposed
framework should provide HSRs with more natural interactions and a more sensitive
understanding of the environment, and hence, the design of the framework is divided into
two subsystems (see the dotted red).

Image/video description generation system
These subsystems are the core modules of the entire interactive framework. HSRs collect
visual data of the surrounding environment through equipped visual sensors (such as
HD or 3D cameras) and sensors (such as tactile and radar). The type of visual data
collected depends on the complexity of the interactive task to be completed by HSRs. It is
generally considered that more complex interactive tasks require the use of continuous
images or real-time videos. The system uses the latest neural image generation algorithm
structure and CNN to perform feature extraction on the pictures and video data of the
surrounding social environment, and converts the data into feature vector sequences that

Figure 4 Samples Flickr 8k (Rashtchian et al., 2010) training data set.
Full-size DOI: 10.7717/peerj-cs.674/fig-4
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can be used by RNN. Finally, the RNN completes the process of generating an interactive
description from the visual data. HSRs use a speech synthesis system that converts these
descriptions into voices to communicate with humans. This process is different from
the past mode of using HSRs human sensing sensors and setting fixed interactive feedback;
the innovation of this system is that HSRs can automatically and naturally generate
interactive feedback. This means that the change in the scene during the interaction will

Figure 5 The infrastructure of the humanoid service robot generating neural image captions as part
of the bionic companionship framework. Full-size DOI: 10.7717/peerj-cs.674/fig-5
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cause a continuous change in the interaction feedback, and this change is not preset by
humans. In addition, in further conversation interactions, human voice response and
social environment data will be coordinated by HSRs and produce continuous
conversation interaction behavior.

Command-robot behavior system
For HSRs, simple conversation interactions are insufficient. HSRs should generate
corresponding motions based on visual and human behavior data. For example, when
humans wave to a robot, the robot should also actively respond. The hypothesis of this
study is to classify or cluster description text generated from visual data and use these
classified description texts to control the motions of HSRs in response to complex
interactive tasks. For example, when the description generated by neural image captions is
“Hello”, then HSRs will automatically determine whether ‘Hello’ matches a category that
requires interactive motion and performs corresponding motions such as waving.

PILOT TESTING, PRELIMINARY RESULTS, AND
DISCUSSION
In the present study, we designed and integrated a classic NIC model on the HSR and
performed a preliminary evaluation.

Introduction to HSR-NIC model
The structure of the HSR-NIC algorithm used in this study was adapted and enhanced
from the model structure proposed by Mao et al. (2014) who used a classic encoder-
decoder structure. In this study, the encoder uses the Xception pre-trained CNN to convert
the input image into a feature vector. The word sequence is then input into the LSTM after
a layer of word embedding layer, and finally, and add operation is performed on the
word features output by the LSTM and the image features extracted by the trained CNN.
These are then input into a decoder composed of a single-layer fully connected layer,
which generates the probability distribution of the next word using a softmax layer. The
LSTM introduced by the model can solve the long-term dependency problem in the
traditional RNN, thereby improving the accuracy of the model. The dense representation
of word embedding can reduce the amount of calculations involved in the model; it also
enables the model to capture similar relationships between words. In addition, the
model used in this study also introduces a dropout layer with a probability of 50% to
increase the robustness of the model. The teacher forcing mechanism was used during
model training to accelerate the model training process. The optimizer used in the research
is Adam, which has the advantages of making the model converge more quickly and
automatically adjusting the learning rate with learning. The variables of the model are
updated by minimizing the cross-entropy loss between the probability distribution of the
predicted result and the probability distribution of the true result and back-propagation.
The model structure diagram as follow (Fig. 3).
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Model forward propagation process
The training process of the image captioning task can be described as follows: For a picture
in the training set, its corresponding description is a sequence that represents the words in
the sentence. For model h, given input image I from the HSR’s vision, the probability of the
model generating sequence is expressed as

P SjI; hð Þ ¼ !N
t¼0PðStjS0; S1; . . . ; St$1; I; hÞ (1)

The logarithm of the likelihood function is used to obtain the log-likelihood function:

log P SjI; hð Þ ¼
XN

t¼0
log PðStjS0; S1; . . . St$1; I; hÞ (2)

The training objective of the model is to maximize the sum of the log-likelihoods of all
training samples:

h% ¼ argmaxh

X
I;Sð Þ

log PðSjI; hÞ (3)

where (I, S) is the training sample. This method of maximum likelihood estimation is
equivalent to empirical risk minimization using the log-loss function. Therefore, in the
forward propagation process of this research model, the image feature vector Iv is extracted
from the image using the CNN, and a two-dimensional vector of shape (batch size, 2048) is
the output.

Iv ¼ CNNhc Ið Þ (4)

The extracted image features need to be encoded by a fully connected layer into the
context feature vector C that can be matched with word features. The word feature vector
is the output Ot of the LSTM over the time step. The input word of LSTM passes through a
word-embedding layer to generate a dense vector representation W(s).

C ¼ Wh Ivð Þ; Ot ¼ LSTMh W sð Þð Þ (5)

Finally, word feature Ot and context feature C are together input into a decoder
composed of a single fully connected layer after the softmax calculation generates the
probability distribution of the next word PðSijI; hÞ.

P SijI; hð Þ ¼ softmax Wh C þ Otð Þð Þ (6)

The loss function is expressed as

L ¼
XT

t¼1
y tð Þ log p tð Þ þ 1$ ytð Þ log 1$ ptð Þ (7)

Training dataset
For the present study, we use Flickr 8k (Rashtchian et al., 2010) as the training dataset. This
is a new benchmark collection for sentence-based image descriptions and searches. It
consists of 8,000 images. Each image was paired with five different captions. These

Yang et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.674 12/20

http://dx.doi.org/10.7717/peerj-cs.674
https://peerj.com/computer-science/


captions provide content descriptions of the objects and events in the picture. The images
do not contain any well-known people or locations but depict random scenes and
situations. Examples of datasets are shown in Fig. 4. The Flickr 8k dataset not only contains
images of animals and objects, but also of some social scenes. These data can help robots to
better understand natural, day-to-day scenes.

The process of humanoid service robot generating image captions
To explore the feasibility of the bionic-companionship framework, preliminary tests were
conducted on a real humanoid service robot (Canbot U05E). The process of generating
image captions by a humanoid service robot is divided into four steps, as shown in Fig. 5.

Step 1. The HSR-NIC API is responsible for controlling the robot to call the high-
definition camera to collect surrounding environment information (the data collection in
this study is focused on HSR capture images). The collected data will be sent to the
local host service program through the HTTP protocol and wait for a response from
the HSR.

Step 2. The HSR-NIC localhost server program receives the data, and the requests
perform preliminary processing and cleaning of the data (image) and send the data
(image) to the HSR-NIC model server program to wait for the calculation result (the
generated caption description).

Step 3. The HSR-NIC model server program analyzes the image data according to the
training parameters saved before, generates the descriptive caption, and returns it to the
local server.

Step 4. The HSR-NIC local server program sends the caption description to the robot
application through the HTTP protocol, and the robot application controls the robot to
respond according to the caption description, such as speech synthesis and motion control.

Preliminary test results and limitation
In this study, we conducted a preliminary test on a humanoid service robot integrated with
the NIC algorithm. The results of the preliminary test were found to be promising.

With the discuss of the last chapter, the research will integrate the NIC into the HSRs
to make the HSRs take advantage of the change of the surrounding environment interact
with the human better. Therefore, the system proposed by this research will combine
qualitative analysis and quantitative analysis to initially validate the performance of the
system.

This study introduces the cross-entropy loss curve of the last 50 epochs of the model
as the evaluation metric for quantitative analysis. As shown in the Fig. 6, the model
finally converges to the minimum loss value of 2.65 in the training set and 2.71 in the
validation set, which proves that the model has no over-fitting and under-fitting, and has
generalization ability. Since the loss value is calculated from the sum of the difference
between the probability value of each predicted word in the predicted description and the
true value, the loss value will be affected by the sentence length of the predicted
description. In related work, researchers (Li et al., 2020; Hu et al., 2020) used some more
reliable evaluation methods to evaluate the performance of the model, including the
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BLUE4 (Papineni et al., 2002) and CIDEr (Vedantam, Lawrence Zitnick & Parikh, 2015).
These evaluation metrics are usually used in the field of machine translation instead of
manual evaluation. Since the tasks handled by the NIC model can be regarded as translated
from images/scenes into English, the evaluation metrics can also be applied to the
evaluation of NIC. This study will use qualitative analysis to replace quantitative analysis of
metrics such as BLUE4 and CIDEr, so as to further evaluate the preliminary performance
of HSR after the integrated NIC model.

As shown in Figs. 7 and 8, the researcher conducted two sets of tests in three different
scenarios with HSR. In the first set of tests, the researcher wore a hat and changed
scenarios. In the second set of tests, the researcher did not wear a hat, and the scene
switching method was the same as in the first set. It can be seen from the experimental
results that the humanoid robot can complete the perception of scene switching through
this algorithm and generate a rough description of the scene. In the first set of tests, most of
the content described was accurate. The robot equipped with the NIC algorithm can
effectively identify ‘man’, ‘black shirt’, and ‘sitting on a bench’. However, in the second
group of tests, there were many errors in the recognition results. This could be attributed to
the researcher’s long hair. Interestingly, researchers with long hair are easily identified
as women or children. This indicates that the accuracy of the NIC algorithm still has room
for improvement.

In addition, in order to test the performance of the system in a dynamic environment.
The researcher conducted the test in a real environment (as Fig. 8). The researcher selected
six real environments as the test data and let the robot generate interactive information.
Among the six real interactive environments, there are three scenes that can be more
accurately recognized by the robot and produce corresponding descriptions. The
description information can correspond to the test environment, and the corresponding
part of the description has been highlighted with the same color in the Fig. 8. Some of
the objects, facilities, and human movements in these scenes can be accurately predicted,
such as sidewalk, traffic, bench, building, building, etc. However, in the other three
environments, the robot did not give an accurate description. The researchers believe that

Figure 6 Loss curve of NIC model on training set and validation set.
Full-size DOI: 10.7717/peerj-cs.674/fig-6
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this may be due to the fact that the training set does not contain objects in these three
environments, causing the model to fail to learn how to express the ‘unfamiliar
environment’.

Figure 7 A series of preliminary testing results captured from Canbot U05E and bionic-
companionship preliminary framework. Full-size DOI: 10.7717/peerj-cs.674/fig-7
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In general, as per the results of the to two experimental sets, it was proven that the robot
equipped with the NIC algorithm can capture the changes in the surrounding environment
and generate different feedbacks according to the changes. The results also demonstrate
the feasibility of the proposed bionic-companionship framework. Although there is still a gap
between the prediction results of the algorithm and the real communication scene,
the researcher believes that special data collection for some specific interaction scenarios
and model training for these specific data can be effective in addressing this gap. Future

Figure 8 Real social environment test examples. Full-size DOI: 10.7717/peerj-cs.674/fig-8
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research directions will mainly focus on improving the accuracy of algorithms and
achieving more human-like interactions. (The detailed process is shown in the HSR-NIC
demo video.) In addition, the researcher believes that the scene understanding of static
images is the basis for dealing with dynamic environments. Some researches have
mentioned that the introduction of related algorithms of object detection into NIC can
identify and generate descriptions of scenes in dynamic environments. This is also the
current research limitation of this research and the research challenges that will be faced in
the future.

CONCLUSIONS
This study presents a review of neural image generation algorithms and application cases
in the field of robotics, and proposes a novel humanoid service robot and human
interaction framework based on the bionic-companionship theory. The subsystems of the
bionic-companionship framework are designed and introduced in detail. Preliminary tests
also initially proved that the framework could increase the sensitivity of HSRs to changes
in the surrounding environment. The proposed framework will contribute to further
development from HRI to HRC. Future work will focus on implementing each of the
subsystems in the framework and applying the framework to HSRs to verify its
performance.
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ABSTRACT
This study aims at classifying flat ground tricks, namely Ollie, Kickflip, Shove-it,
Nollie and Frontside 180, through the identification of significant input image
transformation on different transfer learning models with optimized Support Vector
Machine (SVM) classifier. A total of six amateur skateboarders (20 ± 7 years of age
with at least 5.0 years of experience) executed five tricks for each type of trick
repeatedly on a customized ORY skateboard (IMU sensor fused) on a cemented
ground. From the IMU data, a total of six raw signals extracted. A total of two input
image type, namely raw data (RAW) and Continous Wavelet Transform (CWT), as
well as six transfer learning models from three different families along with grid-
searched optimized SVM, were investigated towards its efficacy in classifying the
skateboarding tricks. It was shown from the study that RAW and CWT input images
on MobileNet, MobileNetV2 and ResNet101 transfer learning models demonstrated
the best test accuracy at 100% on the test dataset. Nonetheless, by evaluating the
computational time amongst the best models, it was established that the CWT-
MobileNet-Optimized SVM pipeline was found to be the best. It could be concluded
that the proposed method is able to facilitate the judges as well as coaches in
identifying skateboarding tricks execution.

Subjects Artificial Intelligence, Data Science, Embedded Computing, Emerging Technologies
Keywords Classification, Support vector machine, Skateboarding, Machine learning,
Transfer learning

INTRODUCTION
A skateboard is a short, narrow board with two small wheels attached to the bottom of
either end. Skateboarders ride on this apparatus to perform tricks, including jumps (ollies),
flips and mid-air spins. It is worth noting that this sport shall make its Olympic
debut in the now delayed Tokyo 2020 Olympic Games. In general, in skateboarding
competitions, the judging is done manually and subjectively through the observation of
selected professional judges. However, it is worth mentioning at this juncture that the
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Head Judge for Skatepark of Tampa & Board has pointed out the myriad difficulties in
providing a judgement in a skateboarding event (Pappalardo, 2014). Amongst the notable
factors reported were the style, speed, difficulty, consistency, trick selection and originality.
Such obstacles are also faced by the coaches in providing comprehensive feedback to
further improve the performance of the athletes (Stein et al., 2018).

Owing to the advancement of technology, the employment of machine learning and, to
a certain extent, deep learning has received due attention in human and sports activity
recognition. For instance, Chen & Xue (2015) employed a deep learning model on data
captured via an accelerometer for human activity recognition (HAR). The authors
extracted the acceleration data through an android phone with a sampling frequency of
100 Hz from the built-in tri-axial accelerometer. Eight activities were investigated, i.e.,
falling, running, jumping, walking, step walking, walking quickly, walking downstairs and
upstairs from 68 males and 32 females. A total of 31,688 labelled samples utilized, where
27,395 samples used for training, and the remaining 4,293 were used for testing. The
authors fed the raw signal transformed images to Convolutional Neural Network with a
three convolutional layer and three pooling layer architecture. Moreover, conventional
feature extraction methods via Fast Fourier Transform, as well as Discrete Continuous
Transform apart from the original time-domain signals that were paired with Support
Vector Machine and Deep Belief Network models, were also investigated. It was shown
from the study that the proposed CNN model could achieve a classification accuracy (CA)
of 93.8% of accuracy and was better than that of the other models evaluated.

Akula, Shah & Ghosh (2018) investigated the use of multi-stage CNN on infrared
images for HAR. The action data were collected from 18 females and 34 males between the
age range of 19 to 28 years old. The FLIR E60 thermal infrared camera was utilized to
capture a total of 5,278 image samples. The images consist of four main categories of
actions, namely falling, sitting, walking, and standing. Additional subclasses for falling and
sitting was also included, in which for falling includes fallen on the ground and fallen on
the desk, whilst for sitting were sitting on a chair with and without a desk. The 5-fold
cross-validation was employed. The images were split into training, validation, and testing
phase with 28,844, 1,255, and 1,179 samples image, respectively. The proposed deep
learning model could achieve a CA of 87.44% against the Histogram of Oriented Gradients
(HOG)-SVM pipeline, which attained a CA of 85.9%.

Lee, Yoon and Cho (2017) evaluated the efficacy of CNN against a conventional machine
learning model, i.e., Random Forest (RF), in the classification of HAR from data gathered
via a tri-axial accelerometer. Five subjects participated in the study where three activities,
namely staying still, running, and walking was recorded via Nexus 6P Huawei
smartphones. The raw x, y and z signals were transformed into a single magnitude vector
data (1D) with two-size feature vectors of 10 and 20 s denoted as Feature10 and Feature20,
respectively. The RF model was evaluated via MATLAB whilst the CNN model via
TensorFlow. It was shown from the study that the proposed 1D CNN achieved a CA of
91.32% for Feature10 and 92.71% for Feature20, respectively outperforming the
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conventional RF model, which achieved a CA of 85.72% and 89.10% for Feature10 and
Feature20, respectively.

Conversely, Rangasamy et al. (2020) proposed the employment of the Transfer Learning
paradigm for hockey activity recognition. The authors employed a pre-trained CNN,
specifically VGG16, to extract features from four main hockey activities, namely free
hit, goal, penalty corner and long corner, respectively. The dataset collected from
International Hockey Federation (FIH) YouTube videos of the 2018 Hockey World Cup
with a resolution of 1,280! 720. A total of 400 frames been used and resized to 224! 224
pixels. Different hyperparameters, namely the number of epochs with a different
number of batch training of 100, 200 and 300, were fine-tuned at the fully connected layer
utilizing a 10-fold cross-validation technique. The preliminary result showed that the
model with 300 epochs achieved the highest CA of 98% then followed by 200 and 100
epochs with CA of 95% and 90%, respectively.

In relation to skateboarding, Groh, Kautz & Schuldhaus (2015) proposed the
employment of machine learning in classifying six different skateboarding tricks using four
machine learning classifiers, namely Naïve Bayes (NB), Partical Decision Tree (PART),
Support Vector Machine with radial kernel basis kernel (RB-SVM) and k-Nearest
Neighbor (kNN). Seven experienced male skateboarders between the age of 21 to 29
participated in the study. The data was gathered via an Inertial Measurement Unit (IMU)
that was placed behind the front truck of the board. It was shown from the study that RB-
SVM, as well as NB models, could achieve a CA of 97.8%. In an extended study, Groh et al.
(2017) then enhanced the proposal by classifying thirteen classes for eleven skateboarding
tricks, one class for bails and one class for other detected events with no trick. In this
enhancement, the authors evaluated five classifiers which are NB, Random Forest (RF),
Linear Support Vector Machine (LSVM), RB-SVM and kNN. It was shown from the study
that the RB-SVM model was the best model amongst the models evaluated with a CA of
89.1%.

In a much earlier study, Anlauff et al. (2010) evaluated the efficacy of Linear Discriminat
Analysis (LDA) in classifying three classes of two fundamental skateboarding tricks,
i.e., Ollie and Ollie180 and one for no trick event. One skateboarder participated in the
study, in which the skateboarder executed the tricks repeatedly for 20 times. A 10-fold
cross-validation technique was employed on the training dataset, and it was shown from
the study that an average CA of 89.33% was reported. Conversely, in a recent investigation,
Corrêa et al. (2017) develop an Artificial Neural Network (ANN) model in classifying
five skateboarding tricks. Interestingly, the authors artificially generated the dataset based
on the acceleration data reported in Groh, Kautz & Schuldhaus (2015). A single hidden
layer architecture was employed with 28 hidden neurons with a tan-sigmoid activation
function trained with the Scaled Conjugate Gradient learning algorithm on a dataset that is
split with an 80:20 ratio for training and validation. The study evaluated the model on data
attained from the Z-axis only and the combination of XYZ axes. It was shown that the
ANN developed for the Z-axis could achieve e a CA of 98.7%

In a more recent study, Abdullah et al. (2020) inspected six machine learning models,
viz. SVM, kNN, ANN, Logistic Regression (LR), RF and NB in classifying five
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skateboarding tricks. An amateur skateboarder participated in the study in which the
accelerometer and gyro data along the XYZ axes were acquired. Different statistical time-
domain features were extracted from all the signals, i.e., mean, skewness, kurtosis, peak
to peak, root mean square and standard deviation. A CA of 95% was reported to be
attained via the features extracted on the LR and NB model. It could be seen from the
limited literature available with regards to the employment of machine learning in
classifying skateboarding tricks demonstrated commendable classification accuracy.
Nevertheless, it is also evident from the literature reported that the use of CNN could
mitigate the shortcomings of conventional machine learning models, particularly in
acquiring significant features that would consequently yield better predictions. Therefore,
this paper aims to address the gap by leveraging the use of a variation of the CNN
model, i.e., the transfer learning model with its fully connected layer replaced with an
optimized SVM model towards the classification of skateboarding tricks. The effect of
input image transformation towards classification accuracy is also investigated.

METHODOLOGY
Data collection
The skateboarding tricks signals were acquired through an instrumented inertial
measurement unit (IMU) device developed. The device is embedded with an MPU6050
sensor, a Bluetooth 2.0 module, a microcontroller and a 3.7 V Lithium Polymer
rechargeable battery. The device is paired together with a riser pad on the other side of the
truck to give balance to the skateboard. Specifically, the device is mounted behind the
front truck, and the pair are fixed with a nylon lock nuts (nyloc). The whole case and riser
pad are made from ABS material printed via Zortrax M200 3D printer. The design of the
IMU device is inspired by the works carried out by (Groh, Kautz & Schuldhaus, 2015).
Figures 1 and 2 depicts the placement of the instrumented device from the frontal and rear
view.

The chosen skateboarding tricks in the present investigation are Ollie (O), Nollie
Frontside Shuvit (NFS), Frontside 180 (FS180), Pop Shove-It (PS) and Kickflip (KF).
The selection of the tricks is non-trivial as it is the most common moves that are executed
by a skateboarder in any competition (Groh, Kautz & Schuldhaus, 2015; Corrêa et al.,
2017). The skateboarding tricks were performed by six 20 ± 7 years old amateur
skateboarder with at least 5 years of experience and been executed successfully five times
per trick. Universiti Malaysia Terengganu granted Ethical approval to carry out the
study within and with its associated facilities (Ethical Application Ref: UMT/JKEPHMK/
2021/53) whilst informed consent was obtained from the skateboarders participated in the
present investigation.

Input signal image transformation
In general, there were six simultaneous different raw signals data collected from the
device per successful trick. The raw signals data were solely taken from the IMU embedded
in the device. They are x-axis linear acceleration (aX), y-axis linear acceleration (aY), z-axis
linear ac-celeration (aZ), x-axis angular acceleration (gX), y-axis acceleration (gX), and
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z-axis acceleration (gZ). All these six raw signals data were synthesized into a single image
representing one single skateboarding trick according to the default image size based on
Table 1.

Figure 1 The position of the instrumented device on the skateboard (front view).
Full-size DOI: 10.7717/peerj-cs.680/fig-1

Figure 2 The placement of the instrumented device on the deck (rear view).
Full-size DOI: 10.7717/peerj-cs.680/fig-2
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Two input image transformation were chosen for this study. The basic input image
was the raw transformation (RAW), where it is directly synthesized from the six raw
signals stacked in a single image. The second input image transformation was a
scalogram image transformed via Continuous Wavelet Transform (CWT). CWT is
the representation of the time-frequency domain of a set of signals that have been
demonstrated to be effective for non-stationary signals (Qassim et al., 2012). The
resolution represented through the CWT algorithm has been reported to be beneficial
owing to the exploitation of the small scale of high frequencies and large scale of low
frequencies (Türk & Özerdem, 2019). Moreover, it has also been reported to provide a
better representation of the arrangement of the frequency domain features as compared to
Fourier Transforms. The mother wavelet that was used in this research is the Morlet
Wavelet. Morlet wavelet is the multiplication of the complex exponential and Gaussian
window. The Morlet algorithm gives an innate link between frequency and time domain to
distinguish the signals acquired via Fourier Transform.

Feature extraction: transfer learning
A total of six transfer learning models was used for this study. The proposed architecture
investigated is depicted in Fig. 3 (RAW) and Fig. 4 (CWT), respectively. This study exploits
the use of three families of pre-trained CNN models, i.e., the MobileNet, NasNet and

Table 1 Default size settings of the transfer learning models.

No. Model Flatten reshape Input image

Height Width

1 MobileNet 7 * 7 * 1,024 224 224

2 MobileNetV2 7 * 7 * 1,280 224 224

3 NasNetLarge 11 * 11 * 4,032 331 331

4 NasNetMobile 7 * 7 * 1,056 224 224

5 ResNet101 7 * 7 * 2,048 224 224

6 ResNet101V2 7 * 7 * 2,048 224 224

Figure 3 RAW-TL-optimized SVM pipeline. Full-size DOI: 10.7717/peerj-cs.680/fig-3
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ResNet families. The rationale of employing transfer learning (TL) models is to reduce the
model development time as the CNN models are not required to be built from scratch
(Amanpour & Erfanian, 2013; Chronopoulou, Baziotis & Potamianos, 2019; Mahendra
Kumar et al., 2021). A departure from conventional means of using such models is that the
present study replaces the fully connected layers that is often referred to dense layers with a
conventional machine learning model, i.e., SVM. Hence, the convolution layers of the
transfer learning models utilized are used exclusively for feature extraction purpose.
The list of the transfer learning model and their respective parameters are tabulated in
Table 1.

Classifier: support vector machine
The features extracted from the different transfer learning models based on the input
images are fed into a variety of SVM models. The variation is based on the different
hyperparameters evaluated, namely, the type of kernel, viz linear, radial basis function
(rbf) and polynomial (poly); the degree of the polynomial function, which was varied
between two to six; (2–6); the kernel coefficient or gamma, γ (0.1, 1, 10, 100); and strength
of the regularization, C (0.01, 0.1, 1, 10, 100), respectively. It is worth noting that the γ
parameter affects the rbf and poly-based SVM models. The loss function of the SVM
classifier built-in in the scikit-learn package is the squared-hinge loss function. Table 2
lists the hyperparameters evaluated. The dataset was split into a ratio of 60:20:20 for
training, testing and validation, respectively, on the 150 synthesized images per input
transformation. The hyperparameters of the SVM models were tuned via the grid-search
algorithm via the three-fold cross-validation technique on the training dataset. A total of
125 SVM models were developed per transfer learning model and per image input.

Figure 4 CWT-TL-optimized SVM pipeline. Full-size DOI: 10.7717/peerj-cs.680/fig-4

Table 2 Hyper-parameter description and range of value.

No. Hyper-parameter Description Range

1 Kernel Type of kernel ‘linear’, ‘poly’, ‘rbf’

2 Degree Degree of polynomial function
(only applicable for ‘poly’ kernel)

2–6

3 Gamma, γ Kernel coefficient 0.1, 1, 10, 100

4 C Strength of the regularization 0.01, 0.1, 1, 10, 100
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Therefore, 1,500 pipelines (which consist of input image-transfer learning model-tuned
SVMmodel) were evaluated in the present investigation. It is worth noting that the overall
pipeline was evaluated on an Intel Core i7 4800MQ @ 2.70 GHz with 8 GB DDR3 800

Figure 5 An example of a binary confusion matrix. Full-size DOI: 10.7717/peerj-cs.680/fig-5

Figure 6 Example of the input image transformation. Full-size DOI: 10.7717/peerj-cs.680/fig-6
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MHz RAM and an Intel HD Graphics 4,600 via Spyder 3.3.6, a Python IDE running on
Python 3.7 along with associated libraries, i.e., scikit-learn 0.22.1 and Keras 2.3.1:
Tensorflow 1.14.0.

Table 3 Classification accuracy of transfer learning model with SVM for the different input image.

No. Input image Model Accuracy

Train Validate Test Average

1 RAW MobileNet 1.00 1.00 1.00 1.00

2 RAW MobileNetV2 1.00 1.00 1.00 1.00

3 RAW NasNetLarge 1.00 0.88 1.00 0.94

4 RAW NasNetMobile 1.00 0.88 1.00 0.94

5 RAW ResNet101 1.00 1.00 1.00 1.00

6 RAW ResNet101V2 1.00 0.88 1.00 0.94

7 CWT MobileNet 1.00 1.00 1.00 1.00

8 CWT MobileNetV2 1.00 1.00 1.00 1.00

9 CWT NasNetLarge 1.00 0.88 0.96 0.92

10 CWT NasNetMobile 1.00 1.00 0.92 0.96

11 CWT ResNet101 1.00 1.00 1.00 1.00

12 CWT ResNet101V2 1.00 1.00 0.96 0.98

Figure 7 The average classification accuracy of different pipelines developed for the different input
image evaluated. Full-size DOI: 10.7717/peerj-cs.680/fig-7
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Linear,

yi w " xi þ bð Þ & 1' ei i ¼ 1; . . . ; m (1)

Polynomial, ‘poly’

K x; x0ð Þ ¼ x " x þ c0ð Þq (2)

Table 4 Computational time between the evaluated pipelines.

No. Input image Model Time (s)

Train Validate Test

1 RAW MobileNet 0.5000 0.1250 0.1250

2 RAW MobileNetV2 0.1563 0.1563 0.1563

3 RAW NasNetLarge 6.0000 1.5938 1.4375

4 RAW NasNetMobile 0.4844 0.1250 0.1250

5 RAW ResNet101 1.0063 0.2656 0.2500

6 RAW ResNet101V2 1.0938 0.2653 0.2653

7 CWT MobileNet 0.4688 0.1094 0.1094

8 CWT MobileNetV2 0.6094 0.1563 0.1563

9 CWT NasNetLarge 5.7188 1.4844 1.4375

10 CWT NasNetMobile 0.5000 0.1406 0.1250

11 CWT ResNet101 1.0156 0.2656 0.2500

12 CWT ResNet101V2 1.0781 0.2656 0.2656

Figure 8 Prediction time of the different pipelines developed for the different input image evaluated.
Full-size DOI: 10.7717/peerj-cs.680/fig-8
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Radial basis function, ‘rbf’

K x; x0ð Þ ¼ e
'
jjx ' x0 jj

2r2 (3)

where w is the weighting vector, b is the constant, and ε is the nonnegative slack variable.

Performance evaluation
In the present study, a number of evaluation metrics were used. The accuracy score
represents the accuracy of the model in predicting the corresponding value to the true
value. The value ranges from zero to one where zero indicates a total misclassification

Table 5 Precision of transfer learning model with SVM for the different input image.

No. Input image Model Precision

Train Validate Test

1 RAW MobileNet 1.00 1.00 1.00

2 RAW MobileNetV2 1.00 1.00 1.00

3 RAW NasNetLarge 1.00 0.89 1.00

4 RAW NasNetMobile 1.00 0.93 1.00

5 RAW ResNet101 1.00 1.00 1.00

6 RAW ResNet101V2 1.00 0.93 1.00

7 CWT MobileNet 1.00 1.00 1.00

8 CWT MobileNetV2 1.00 1.00 1.00

9 CWT NasNetLarge 1.00 0.91 0.97

10 CWT NasNetMobile 1.00 1.00 0.93

11 CWT ResNet101 1.00 1.00 1.00

12 CWT ResNet101V2 1.00 1.00 0.97

Table 6 Recall of transfer learning model with SVM for different input image.

No. Input image Model Recall

Train Validate Test

1 RAW MobileNet 1.00 1.00 1.00

2 RAW MobileNetV2 1.00 1.00 1.00

3 RAW NasNetLarge 1.00 0.88 1.00

4 RAW NasNetMobile 1.00 0.88 1.00

5 RAW ResNet101 1.00 1.00 1.00

6 RAW ResNet101V2 1.00 0.88 1.00

7 CWT MobileNet 1.00 1.00 1.00

8 CWT MobileNetV2 1.00 1.00 1.00

9 CWT NasNetLarge 1.00 0.88 0.96

10 CWT NasNetMobile 1.00 1.00 0.92

11 CWT ResNet101 1.00 1.00 1.00

12 CWT ResNet101V2 1.00 1.00 0.96
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transpired whilst one indicates that no misclassification transpired. It is commonly used to
evaluate the accuracy of a multiclass classification problem (Foody & Mathur, 2004)
and one of the most straightforward and simplest measures (Sokolova & Lapalme, 2009;
Flach, 2019). This score also can be interpreted through the confusion matrix. Figure 5
illustrates an example of a binary class confusion matrix. True Positive (TP) is defined as a
positive sample correctly predicted as positive. True Negative (TN) is the negative sample
correctly predicted as negative. When the positive sample is incorrectly predicted as
negative, it is counted toward the False Negative (FN). Conversely, False Positives (FP) is a
negative sample incorrectly predicted as positive. The precision measures the percentage of
correct positive predictions over the cumulative number of positive predictions. The
sensitivity (often known as recall) is the number of true positive predictions divided by the
sum of true positives as well as the false negatives (Vijay Anand & Shantha Selvakumari,
2019). The F1-score discloses the balance between the recall and the precision values.
Whilst the specificity is essentially the proportion of actual negative values, which is
forecasted as the true negative. It is also worth noting at this juncture, in the event that a tie
between the classification accuracy transpire between the best pipelines, the determining
factor would be based on the computational time of the pipelines.

EXPERIMENTAL RESULTS AND DISCUSSION
Figure 6 depicts an example of the synthesized input images per skateboarding tricks with
respect to RAW and CWT, respectively. Table 3 reports the accuracy of the evaluated
pipelines. It could be observed that both RAW and CWT input transformation could yield
an accuracy of 100% on all train, test and validation dataset for both MobileNet and
ResNet101 families by utilizing the optimized SVM model. The optimized
hyperparameters for the pipelines are the linear kernel-based SVM model with a C and
gamma, γ value of 0.01 and 0.1, respectively. A similar performance is noticed for the

Table 7 F1-score of transfer learning model with SVM for different input image.

No. Input image Model F1-score

Train Validate Test

1 RAW MobileNet 1.00 1.00 1.00

2 RAW MobileNetV2 1.00 1.00 1.00

3 RAW NasNetLarge 1.00 0.88 1.00

4 RAW NasNetMobile 1.00 0.87 1.00

5 RAW ResNet101 1.00 1.00 1.00

6 RAW ResNet101V2 1.00 0.87 1.00

7 CWT MobileNet 1.00 1.00 1.00

8 CWT MobileNetV2 1.00 1.00 1.00

9 CWT NasNetLarge 1.00 0.86 0.96

10 CWT NasNetMobile 1.00 1.00 0.92

11 CWT ResNet101 1.00 1.00 1.00

12 CWT ResNet101V2 1.00 1.00 0.96
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RAW-ResNet101-optimized SVM as well as the CWT-ResNet101-optimized SVM
models. Figure 7 depicts the average accuracy of the pipelines evaluated. Therefore, the
determining factor for which pipeline is the best would be the computational time.
As shown in Table 4, based on the computational time, the CWT-MobileNet-optimized
SVM is deemed to be the best pipeline owing to the reduced computational time taken
as compared to the other models evaluated. Figure 8 illustrates the aforesaid prediction
time.

The precision, recall, F1-score, specificity on both input images across different
evaluated pipelines are tabulated in Tables 5–9, respectively. The confusion matrix of

Table 8 Specificity of transfer learning model with SVM for RAW input image.

No. Input image Model Trick Specificity

Train Validate Test

1 RAW MobileNet Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

2 RAW MobileNetV2 Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

3 RAW NasNetLarge Ollie 1.00 0.95 1.00

NFS 1.00 1.00 1.00

FS180 1.00 0.95 1.00

PS 1.00 0.95 1.00

KF 1.00 1.00 1.00

4 RAW NasNetMobile Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 0.85 1.00

KF 1.00 1.00 1.00

5 RAW ResNet101 Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

6 RAW ResNet101V2 Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 0.85 1.00

KF 1.00 1.00 1.00
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the best pipeline, i.e., the CWT-MobileNet-optimized SVM on the test dataset, is depicted
in Fig. 9. The present study has demonstrated that through the proposed pipeline, a
better classification accuracy could be achieved as compared to the conventional means
reported in the literature, particularly with regards to the classification of skateboarding
tricks. The encouraging results reported suggests that the proposed pipeline could be
beneficial in providing an objective-based judgment in The findings of the present
investigation are in agreement with other studies that have employed such a technique
in different applications, for instance, Lee, Yoon and Cho (2017), Rangasamy et al. (2020)
as well asMahendra Kumar et al. (2021). Nonetheless, it is worth noting that the efficacy of

Table 9 Specificity of transfer learning model with SVM for CWT input image.

No. Input image Model Trick Specificity

Train Validate Test

1 CWT MobileNet Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

2 CWT MobileNetV2 Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

3 CWT NasNetLarge Ollie 1.00 0.95 1.00

NFS 1.00 1.00 0.95

FS180 1.00 1.00 1.00

PS 1.00 0.90 1.00

KF 1.00 1.00 1.00

4 CWT NasNetMobile Ollie 1.00 1.00 1.00

NFS 1.00 1.00 0.95

FS180 1.00 1.00 0.95

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

5 CWT ResNet101 Ollie 1.00 1.00 1.00

NFS 1.00 1.00 1.00

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00

6 CWT ResNet101V2 Ollie 1.00 1.00 1.00

NFS 1.00 1.00 0.95

FS180 1.00 1.00 1.00

PS 1.00 1.00 1.00

KF 1.00 1.00 1.00
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the pipelines is highly dependent on the dataset utilized, and the performance may vary.
Future studies shall explore the use of different feature input transformation, other transfer
learning as well as machine learning models.

CONCLUSION
The present study investigated the efficacy of different transfer learning pipeline towards
the classification of skateboarding tricks. It was shown that the study that best pipeline
identified is the CWT-MobileNet-optimized SVM as it could yield the fastest
computational time. It could be seen that the convolution part of the pre-trained CNN
models or transfer learning models could effortlessly extract significant features, regardless
of the input image provided. The findings are non-trivial in the realization of an objective-
based judgement in a skateboarding competition. Future studies shall evaluate other
types of input image transformation methods and transfer learning models as well as their
effect towards other classifiers that have yet been investigated in the present study.
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ABSTRACT
In multi-agent reinforcement learning, the cooperative learning behavior of agents
is very important. In the field of heterogeneous multi-agent reinforcement learning,
cooperative behavior among different types of agents in a group is pursued. Learning
a joint-action set during centralized training is an attractive way to obtain such
cooperative behavior; however, this method brings limited learning performance with
heterogeneous agents. To improve the learning performance of heterogeneous agents
during centralized training, two-stage heterogeneous centralized training which allows
the training of multiple roles of heterogeneous agents is proposed. During training, two
training processes are conducted in a series. One of the two stages is to attempt training
each agent according to its role, aiming at the maximization of individual role rewards.
The other is for training the agents as a whole tomake them learn cooperative behaviors
while attempting to maximize shared collective rewards, e.g., team rewards. Because
these two training processes are conducted in a series in every time step, agents can learn
how tomaximize role rewards and team rewards simultaneously. The proposedmethod
is applied to 5 versus 5 AI robot soccer for validation. The experiments are performed
in a robot soccer environment using Webots robot simulation software. Simulation
results show that the proposed method can train the robots of the robot soccer team
effectively, achieving higher role rewards and higher team rewards as compared to other
three approaches that can be used to solve problems of training cooperativemulti-agent.
Quantitatively, a team trained by the proposedmethod improves the score concede rate
by 5% to 30% when compared to teams trained with the other approaches in matches
against evaluation teams.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Robotics
Keywords Multi-agent reinforcement learning, Heterogeneous agents, Centralized training,
Deep learning, Robotics

INTRODUCTION
Recently, deep reinforcement learning (DRL) has been widely applied to deterministic
games (Silver et al., 2018), video games (Mnih et al., 2015; Mnih et al., 2016; Silver et al.,
2016), sensor networks (Kim et al., 2020), and complex robotic tasks (Andrychowicz
et al., 2017; Hwangbo et al., 2019; Seo et al., 2019; Vecchietti et al., 2020; Vecchietti, Seo &
Har, 2020). Despite the breakthrough results achieved in the field of DRL, deep learning
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in multi-agent environments that require both cooperation and competition is still
challenging. Promising results have been for cooperative-competitive multi-agent games
such as StarCraft (Vinyals et al., 2019) and Dota (Berner et al., 2019). For multi-agent
problems such as multi-robot soccer (Liu et al., 2019), security (He, Dai & Ning, 2015;
Klima, Tuyls & Oliehoek, 2016), traffic control (Chu et al., 2019; Zhang et al., 2019), and
autonomous driving (Shalev-Shwartz, Shammah & Shashua, 2016; Sallab et al., 2017),
non-stationarity, partial observability, multi-agent training schemes, and heterogeneity
can be challenging issues (Nguyen, Nguyen & Nahavandi, 2020). To solve these challenges,
multi-agent reinforcement learning (MARL) techniques (Lowe et al., 2017; Sunehag et al.,
2017; Foerster et al., 2018; Vinyals et al., 2019; Liu et al., 2019; Samvelyan et al., 2019; Rashid
et al., 2020) have been intensively investigated.

When using the MARL, several works have used the centralized training in decentralized
execution (CTDE) framework (Lowe et al., 2017; Sunehag et al., 2017; Foerster et al., 2018;
Rashid et al., 2020). In the CTDE framework, local observations of agents, global state of
the environment, and joint-actions taken by the agents at each time step are available
during training to the centralized policy network, while only the local observations
of agents are available during execution. In other words, each agent selects its action,
that is the output of a policy network, without considering the full information of the
environment. To address the non-stationarity problem, multi-agent deep deterministic
policy gradient (MADDPG) (Lowe et al., 2017) was proposed using a CTDE framework and
the deep deterministic policy gradient (DDPG) actor-critic algorithm for continuous action
spaces (Lillicrap et al., 2015).When cooperative behavior is to be achieved, representing that
there is a cooperative reward that should be maximized by multiple agents, credit should
be assigned accordingly to each agent based on its contribution. To address this problem,
counterfactual multi-agent (COMA) (Foerster et al., 2018), value decomposition networks
(VDN) (Sunehag et al., 2017), andmonotonic value function factorization (QMIX) (Rashid
et al., 2020) have been proposed, using the CTDE framework combined with value-based
algorithms such as deep Q networks (DQN) (Mnih et al., 2013), deep recurrent Q networks
(DRQN) (Hausknecht & Stone, 2015), and dueling Q networks (Wang et al., 2016).

In this paper, a novel training method for MARL of heterogeneous agents, in which each
agent should choose its action in a decentralizedmanner, is proposed. The proposedmethod
addresses how to provide an optimal policy and maximize the cooperative behavior among
heterogeneous agents. To this end, during training, two training stages are conducted in a
series. The first stage is for making each agent learn to maximize its individual role reward
while executing its individual role. The second one is for making the agents as a whole
learn cooperative behavior, aiming at the maximization of team reward. The proposed
method is designed to be applied to MARL with heterogeneous agents in cooperative
or cooperative-competitive scenarios. In this paper, a cooperative-competitive Artificial
Intelligence (AI) robot soccer environment is used for experiments. The environment can
be described in relation to 5 versus 5 robot soccer game described in Hong et al. (2021).
In the robot soccer game, two teams of five robots capable of kick and jump behaviors
compete against each other, similarly to the StarCraft, so the game can be seen as a
micro-management problem. The policy for the proposed method and other methods
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for comparisons are trained by using self-play (Heinrich, Lanctot & Silver, 2015; Lanctot
et al., 2017; Silver et al., 2017). Self-play in a competitive environment is used so that the
opponent team is kept at an appropriate level of difficulty at each training stage.

The main contributions of this paper are as follows
1. A framework for novel training method called two-stage heterogeneous centralized

training (TSHCT) aiming at centralized training of heterogeneous agents is proposed.
In the proposed method, there are two training stages that are conducted in a series.
The first stage is responsible for training individual behaviors by maximizing individual
role rewards. The second stage is for training cooperative behaviors by maximizing a
shared collective reward.

2. Experiments are conducted to compare the performance of the proposed method with
other baseline methods, COMA, VDN, and QMIX. The proposed method and the
baseline methods are trained with self-play. To compare the results obtained from
the experiments, total rewards (during training) and score/concede rates (against
different opponent teams) are presented. From the comparisons, we will show better
performance of the proposed method during game.

3. The proposed method aims at MARL with heterogeneous agents in cooperative and
cooperative-competitive scenarios. For experiments, a cooperative-competitive AI
robot soccer environment, where there are 5 robots with 3 different roles in each team
(one goalkeeper, two defenders, and two forwards), is used.
The remainder of this paper is organized as follows. ‘Background’ presents the concept

of the MARL, system modeling, and other methods which are used as baselines for
comparisons in the experiments. ‘Proposed Method’ introduces the proposed method in
details. ‘Simulation Results’ presents the simulation environment, ablation studies, and
game results of the AI robot soccer. ‘Conclusion’ concludes this paper.

BACKGROUND
In this section, the mathematical modeling of the proposed method is presented. Also,
other methods for cooperative MARL using the CTDE framework are presented.

System modeling
The cooperative-competitive multi-agent problem, specifically applied in this paper
to AI robot soccer, is modeled as a decentralized partially observable Markov
decision process (Dec-POMDP) (Oliehoek & Amato, 2016) that each agent has its own
observation of the environment. The Dec-POMDP can be formulated by an 8-tuple
G=< S,U ,P,r,Z ,O,n,γ >. The set of states and the set of actions are represented by S
and U respectively. Each team contains n agents. The observation function O(s,a), where
s and a∈ {1,...,n} are state and n agents, determines the observation z ∈Z that each agent
perceived individually at each time step. At each time step, the n agents choose their actions
ua ∈U , which is an action taken by the a-th agent, based on their action-observation history.
In this modeling, as recurrent neural networks (RNN) (Hochreiter & Schmidhuber, 1997)
is used by the MARL algorithm, the policy is conditioned on the joint action-observation
history as well as the current agent observation z . The state of the environment changes
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according to a transition probability P . Unlike the partially observable stochastic game, all
agents in Dec-POMDP share a collective reward and an individual reward drawn from the
reward function r(s,u), where u is a joint-action which is a set of each agent’s action. The
discount factor of the MARL algorithm is represented by γ .

In MARL, as multiple agents act simultaneously in the environment based only on
their own action-observation history and do not know about the individual policy of each
agent, there exists a non-stationarity problem. The behaviors of other agents are changing
during training and can influence the reward received by each agent. To address this issue,
the system is modeled using a centralized training in decentralized execution (CTDE)
framework. In the CTDE framework, the full state of the environment can be accessed
in the training procedure to get the state-action value. On the other hand, only the local
observation can be accessed by the agent during execution. The joint-action from all agents
is also available during the training procedure by the centralized policy to alleviate the
non-stationarity issue.

In this paper, we focus on value-based MARL algorithms applied in environments
where a sense of cooperation is needed between agents, meaning that they share a collective
reward. The proposed algorithm is to be combined with deep recurrent Q-networks
(DRQN) (Hausknecht & Stone, 2015) and dueling deep Q-networks (Wang et al., 2016).
The DRQN algorithm, as proposed in Hausknecht & Stone (2015), addresses single-agent
with partially observable environments. The architecture consists of the DQN (Mnih et
al., 2015) combined with RNN. The DRQN approximates the state-action value function
Q(s,u), where s and u are a state and an action of single agent, with RNN to maintain an
internal state and aggregate observations over time. It also can be taken to approximate
Q(st ,ht−1,u), where st and ht−1 represent the observation at time step t and the hidden
state at time step t −1, which has information of previous states and acts as a memory.
The proposed method is also to be combined with the dueling deep Q-networks (Wang
et al., 2016). The dueling deep Q-networks is a neural network architecture designed for
value-based RL that has two streams in the computation of the state-action value. One
stream is for approximating the value function V (s) and the other is for approximating the
advantage function A(s,u). The value function V (s) depends only on state and presents
how good a state is. The advantage function A(s,u) depends on both state and action and
presents how advantageous it is to take an action u in comparison to the other actions at
the given state s. The value and the advantage are merged to get the final state-action value
Q(s,u) as follows

Q(s,u)=V (s)+A(s,u)−
∑

u′A(s,u′)
N

, (1)

where u′ represents each possible action and N is the number of actions. In this paper,
the dueling deep Q-networks is combined with the RNN to handle the action-observation
history used as the input of the policy. In the architecture of dueling deep Q-networks with
the RNN, e.g., Dueling DRQN, the RNN is inserted right before the crossroad of streams
of computation. The dueling DRQN is compared with the DRQN as an ablation study in
‘Simulation Results’.

Kim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.718 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.718


In the following subsections, other methods relevant to comparisons are presented.
In this paper, we focus on methods that can be combined with off-policy value-based
algorithms and focus on the maximization of a joint state-action value, trying to assign
proper credit to individual agents on the shared reward received.

Counterfactual multi-agent policy gradients
Counterfactual multi-agent (COMA), introduced by Foerster et al. (2018), utilizes a single
centralized critic to train decentralized actors and deals with the challenge of themulti-agent
credit assignment problem. In the cooperative environments that are the main target for
the COMA, it is difficult to determine the contribution of each agent to the shared collective
reward received by the team. The centralized critic has access to the global state and the
actions of the agent to model the joint state-action value function.

Value decomposition network
The value decomposition network (VDN) (Sunehag et al., 2017) aims at learning a joint-
action value function Qtot (τ ,u), where τ is a joint-action observation history and u is
a joint-action. The Qtot (τ ,u) can be expressed as a sum of a-th agent’s individual value
functions Qa(τ a,ua;θa) as follow

Qtot (τ ,u)=
n∑

a=1

Qa(τ a,ua;θa), (2)

where each Qa(τ a,ua;θa) is a utility function of the a-th agent and θa is the policy of
the a-th agent. The loss function for the VDN is the same as that of the deep Q-network
(DQN) (Mnih et al., 2015), where Q is replaced by Qtot (τ ,u).

QMIX
QMIX (Rashid et al., 2020) is a deep multi-agent reinforcement learning method to be
trained using CTDE. It uses the additional global state information that is the input of a
mixing network. The QMIX is trained to minimize the loss, just like the VDN (Sunehag et
al., 2017), given as

L(θ)=
b∑

i=1

[(ytoti −Qtot (τ ,u,s;θ))2], (3)

where b is the batch size of transitions sampled from the replay buffer and Qtot is output
of the mixing network and the target ytoti = r + γmaxu′Qtot (τ ′,u′,s′;θ−), and θ− are
the parameters of a target network. The QMIX allows learning of joint-action-value
functions, which are equivalent to the composition of optimal Q-values of each agent. This
is achieved by imposing a monotonicity constraint on the mixing network. Monotonicity
can be enforced by the constraint on the relationship between Qtot and individual Q value
functions, given as

Qa : ∂Qtot

∂Qa
≥ 0,∀a∈A. (4)
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Figure 1 MARL structure for AI robot soccer.
Full-size DOI: 10.7717/peerjcs.718/fig-1

PROPOSED METHOD
In heterogeneous multi-agent reinforcement learning, the main challenge can be described
as how to provide an optimal policy andmaximize cooperative behavior in a heterogeneous
multi-agent environment. In this scenario, the agents act independently and maximize not
only the individual reward but also a shared reward. To tackle this problem, a novel training
method called two-stage heterogeneous centralized training is proposed and described in
this section and to be applied to 5 versus 5 AI robot soccer.

MARL structure for AI robot soccer
TheMARL structure in 5 versus 5AI robot soccer is presented in Fig. 1. In theAI robot soccer
each robot has its role. The roles are goalkeeper, defender 1, defender 2, forward 1, and
forward 2 which are denoted as GK(gk), D1(d1), D2(d2), F1(f1), and F2(f2), respectively.
Each robot has individual observations and individual rewards according to its role in
soccer game. Each robot receives its individual observation orolet ,role ∈ {gk,d1,d2,f 1,f 2}
at each time step t and selects its action urolet according to a policy network which is trying
to maximizing individual role rewards rrolet and team reward r teamt . The policy network also
takes into consideration past individual observations and actions taken. The concatenation
of individual actions of the 5 robots forms a joint-action set Ut . By performing this
joint-action in the AI robot soccer environment, the simulator calculates the next global
state St+1, robot observation Ot+1, and reward Rt+1. It is noted that the global state is
available only during training.

TSHCT architecture
As shown in Fig. 2, the training procedure is divided into two stages. In the first stage,
agents of the same type (homogeneous agents, e.g., two agents as defenders) are trained.
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Figure 2 Overall architecture of two-stage heterogeneous centralized training. In the first stage, the
agents are trained using their individual role rewards, goalkeeper reward, defender reward, and forward
reward. A shared policy is used by defenders and by forwards. In the second stage, the agents are trained
using a collective team reward. The global state of the environment st is also used as an input of the team
mixing network, following the structure of a hypernetwork (Ha, Dai & Le, 2016).

Full-size DOI: 10.7717/peerjcs.718/fig-2

Decentralized execution is used during inference and a shared policy is used by the agents
of the same type. In the second training stage, all heterogeneous agents are trained jointly.
These two stages are executed in a serial learning structure.

To model each agent’s policy, the structure of DQN with gated recurrent unit(GRU)
(Chung et al., 2014) or the structure of Dueling Q-Networks with GRU is used in the
experiments. The policy network receives as input 40 subsequential frames with the
current individual observation of the agent o(Nn)

t and the last action chosen u(Nn)
(t−1), where

Nn is the n-th agent of theN -role (type). The output of the policy network is the state-action
value QNn . The action with the highest Q-value is chosen at each time step with epsilon
greedy exploration.

In training stage 1, the Q(RoleN )∀N ∈ {GK (goalkeeper),D12(defenders),F12(forwards)}
is calculated by adding Q-values QNn from the homogeneous agent network. In training
stage 2, the team mixing network combines the individual role rewards into the shared
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collective reward. The mixing network is modeled as a hypernetwork (Ha, Dai & Le, 2016),
using feed-forward layers. The hypernetwork is conditioned on the global state St of
the environment and takes the values of Q(RoleGK ), Q(RoleD12), and Q(RoleF12) produced in
training stage 1 as inputs. The output of the mixing network is QTeam.

TSHCT learning equations
The proposedmethod is used tominimize the losses through the entire training. In training
stage 1, each role optimizer updates the weights of the policy network to minimize the
loss LRoleN (θ) in relation to the target yRoleN . The target yRoleN is calculated based on the
Bellman equation (Bellman, 1954) with the sum of the individual role rewards RewardRoleN
for the current time step and the Q-value estimated for the next state. The target and the
loss are given as follows

yRoleN =RewardRoleN +γmaxu′QRoleN (τ ′,u′,s′;θ−),

LRoleN (θ)=
b∑

i=1

[(yRoleNi −QRoleN (τ ,u,s;θ))2], (5)

where γ and θ− are the parameters of a target network, the discount factor and policy,
similar to the ones presented in DQN (Mnih et al., 2015) to stabilize the training procedure
and b is the batch size of episodes sampled from the replay buffer. In training stage 2, the
team optimizer updates the weights of mixing network and policy networks to minimize
the team loss in relation to the team target yTeam calculated with the total shared reward
RewardTotal , which is the sum of sparse cooperative team rewards and dense individual role
rewards. The team loss LTeam(θ) is given as follows

yTeam =RewardTotal +γmaxu′QTeam(τ ′,u′,s′;θ−),

LTeam(θ)=
b∑

i=1

[(yTeami −QTeam(τ ,u,s;θ))2]. (6)

Equations (5) and (6) are analogous to the minimum squared loss used in Mnih et al.
(2015). Using additivity (Sunehag et al., 2017) and monotonicity (Rashid et al., 2020),
the TSHCT trains heterogeneous agents by maximizing QTeam in stage 2, while learning
multiple roles by maximizing the Q-value of each individual role Q(RoleGK ), Q(RoleD12), and
Q(RoleF12) in stage 1.

TSHCT curriculum learning through self-play
To train a robust policy in a competitive-cooperative scenario that can work well against
multi-agent in the opponent team, curriculum learning is needed. In this paper, we use
self-play as a form of the implicit curriculum with the objective of learning robust AI
robot soccer strategies. The implicit self-play curriculum is implemented by updating the
opponent team when the number of episodes reaches a particular number. The opponent
team is kept updated and reference policies take turns. Using self-play, it is possible to
keep the opponent team at an appropriate level of competitivity, not too strong so that
the policy allows good behavior and not too easy so that the policy avoids weak behaviors.
The soccer strategy learned through self-play tends to lead to acceptable game performance
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Figure 3 Specifications of the AI robot soccer environment. Robots with different roles, goalkeeper, de-
fender, or forward, have different mass, maximum linear velocity, and maximum torque.

Full-size DOI: 10.7717/peerjcs.718/fig-3

(Heinrich, Lanctot & Silver, 2015; Lanctot et al., 2017; Silver et al., 2017) as the result of the
automated curriculum.

SIMULATION RESULTS
In this section, the MARL environment used in the experiments and the results obtained
by the TSHCT and other baseline methods are described.

AI robot soccer MARL environment
To demonstrate the performance of the TSHCT, experiments are conducted in an AI
robot soccer environment with specifications presented in Fig. 3, which is developed with
Webots robot simulation software (Michel, 2004) and based on the environment described
in Hong et al. (2021). In this AI Soccer simulation game, two teams compete similarly to a
real soccer game, trying to kick the ball into the opponent’s goal area to score and to win
the game against the opponent team. In each team, there are 5 robots with 3 different roles
(one goalkeeper, two defenders, and two forwards). The AI robot soccer game is divided
into two 5 minute-long halves. For training, the game is divided up into episodes of 40
sequential frames. An episode is over whenever 40 sequential frames are processed.

Global state and observations
The global state, available only during centralized training and used as input to the mixing
network, contains information of all the soccer robots and the ball. Specifically, the state
vector contains the coordinates and orientations of all soccer robots, including robots of
the opponent team, and the ball coordinates. The coordinates are relative to the center of
the field (origin). The individual local observations of each robot are their relative positions
in the field and relative distances and orientations to other robots and to the ball within
their range of view. These observations are used as inputs of the policy networks.
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Action
The basic actions committed by the robots are move, jump and kick. They are achieved
by giving continuous control variables to the feet and legs. To achieve these behaviors a
discrete set of 20 actions is designed which is allowed to be taken by the agent at each time
step. A discrete set of actions is used so that the DRQN and the Dueling DRQN can be
used as the off-policy value-based algorithms for the experiments. The discrete action set
consists of actions of forward motion, backward motion, 6 directions of forward turns, 4
directions of backward turns, clockwise and counterclockwise turns, 2 kinds of forward
turn combined with kick, 2 kinds of forward motion combined with kick, stop combined
with kick, and stop.

Reward
To train AI soccer robots to perform their roles and cooperative behavior, individual role
rewards and a shared team reward are defined. Individual role rewards are a combination
of dense rewards associated with two pieces of information. One is the ball information
relative to the robot, such as distance, velocity, and angle. The other is the information of
the expected position which is defined for each role, i.e., default position where the robot
should be to play its role. The team reward is a combination of a sparse reward related to
scoring and dense rewards related to the distance and velocity between the ball and the
opponent’s goal.

Equations (7) and (8) show the mathematical modeling of the individual role reward
and the team reward. In Eq. (7), drp is the distance between the robot and its expected
role position, θrb and vrb are the relative angle and relative velocity between the robot
and the ball, dbg ,pre/cur is the distance between the ball and the opponent goal center at
previous/current time step, and isTouch is a boolean that is true when the robot touched
the ball within the last 10 time steps. In Eq. (8), dbg and vbg are distance and velocity
between the ball and the opponent goal center and isScore is 100 if the team scored against
the opponent team.

rrole = e−drp +0.5e−θrb +0.5(1−e−vrb)+50(dbg ,pre −dbg ,cur )× isTouch. (7)

r team = 5e−dbg +5(1−e−vbg )+ isScore. (8)

Network hyperparameters
The neural network hyperparameters used in the experiments are as follows

• DRQN architecture: 2 layers with 128 hidden units, 1 layer of GRU with 128 hidden
units, and ReLU non-linearities.

• Dueling DRQN architecture: 1 layer with 128 hidden units, 1 layer of GRU with 128
hidden units, 2 layer with 128 hidden units for value prediction, 2 layer with 128 hidden
units for advantage prediction, and ReLU non-linearities.

• Mixing network architecture: 1 layer of mixing network with 32 hidden units, 2 layers
of hypernetworks with 32 hidden units, and ReLU non-linearities.
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• ADAM optimizer (Kingma & Ba, 2014) with learning rate set to 4×10−5 for both policy
and mixing networks.

• Discount factor γ set to 0.99.
• Target networks updated every 16,000 iterations.
• Epsilon used for exploration decreased by 0.025 every 104 iterations until it is kept at
0.05 at the end of training.

• Buffer size set to store 5×103 episodes.
• Batch size set to 64.

Results
Evaluation of TSHCT and baselines, COMA, VDN, and QMIX
In this section, the evaluation of the TSHCT and baseline methods, COMA, VDN, and
QMIX, are presented. The proposed method and baseline methods are trained for a total of
200k episodes using epsilon greedy exploration with self-play. The evaluation is conducted
by comparing the performances of 4 algorithms, TSHCT, COMA, VDN, and QMIX. The
performances are measured by matches against three evaluation teams, noted as Evaluation
Team 1, 2, and 3. As the result of the evaluation, comparisons of rewards and score-concede
rates are given. The ‘‘score’’ term means a goal scored by own team while the ‘‘concede’’
term representss a goal scored by the opponent team. The score-concede rate is defined as
the percentage of the number of scores divided by the sum of the number of scoring and
conceding.

In the first evaluation, the performances of the TSHCT and the baselines are obtained
by playing against the Evaluation Team 1, which is a team trained for 200k episodes with
COMA. The experimental result shows that the TSHCT is superior to COMA, VDN,
and QMIX algorithms after 80k episodes, as shown in Fig. 4, where the total reward is
defined as the sum of three individual rewards and the team reward. When the maximum
average total reward is defined as the maximum value of the average of total reward of
sequential 10,000 episodes, the maximum average total rewards of TSHCT, COMA, VDN,
and QMIX are 5.92, 4.63, 4.83, and 5.05, respectively. The score-concede rate is defined
as the maximum value of the averages of score-concede rates obtained over 10 sequential
games. The score-concede rates of TSHCT, COMA, VDN, and QMIX are 79.01%, 50.40%,
64.21%, and 67.30%, respectively, as shown in Fig. 5. It is observed that the TSHCT
improves the score-concede rate by 28.61% as compared to that of COMA.

For the second evaluation, the performances of the TSHCT and the baselines are
measured by playing against the Evaluation Team 2, which is a team trained for 200k
episodes with VDN. Experiment results presented in Fig. 6 show that the TSHCT is
superior to the baseline algorithms after 80k episodes. The maximum average total rewards
of TSHCT, COMA, VDN, and QMIX are 6.05, 4.50, 4.89, and 5.08, respectively. The
maximum averages of score-concede rate of TSHCT, COMA, VDN, and QMIX are
62.85%, 32.27%, 50.97%, and 60.85%, respectively, as shown in Fig. 7. It is observed that
the TSHCT improved the score-concede rate by 11.88% as compared to that of VDN.

For the third evaluation, the performances of the TSHCT and the baselines are obtained
by playing against the Evaluation Team 3, which is a team trained for 200k episodes with
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Figure 4 Total reward obtained during training by TSHCT, COMA, VDN, and QMIX. It is evaluated
against Evaluation Team 1.

Full-size DOI: 10.7717/peerjcs.718/fig-4

Figure 5 Comparison of score, concede, and score-concede rate obtained during training by TSHCT,
COMA, VDN, and QMIX. It is evaluated against Evaluation Team 1.

Full-size DOI: 10.7717/peerjcs.718/fig-5

QMIX. Experiment results show that TSHCT outperforms the baseline algorithms after
60k episodes, as shown in Fig. 8. The maximum average total rewards of TSHCT, COMA,
VDN, and QMIX are 5.92, 4.50, 4.95, and 4.98, respectively. The maximum averages of
score-concede rate of TSHCT, COMA, VDN, and QMIX are 52.08%, 29.99%, 48.84%,
and 46.63%, respectively, as shown in Fig. 9. It is seen that the TSHCT improved the
performance by 5.45% as compared to that of QMIX. It is important to mention that
QMIX is the algorithm with the best performance when compared with the other baseline
methods, VDN and COMA. s
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Figure 6 Total reward obtained during training by TSHCT, COMA, VDN, and QMIX. It is evaluated
against Evaluation Team 2.

Full-size DOI: 10.7717/peerjcs.718/fig-6

Figure 7 Comparisons of score, concede, and score-concede rate obtained during training by TSHCT,
COMA, VDN, and QMIX. The score, concede, and score-concede rate are evaluated against Evaluation
Team 2.

Full-size DOI: 10.7717/peerjcs.718/fig-7

The final performances of the policies trained by the proposed method and the baseline
methods are compared by conducting 10 min matches. Table 1 summarizes the results and
statistics of these matches.

Ablation study: DRQN vs dueling DRQN
In AI robot soccer, several different sequences of actions can lead to similar reward values.
From this observation, an ablation study is conducted by combining the TSHCT with
dueling Q-network. Dueling Q-network often leads to better policy in the presence of
distinct actions leading to similar reward values (Wang et al., 2016). In this ablation study,
the traditional dueling Q-network architecture is combined with the RNN, which is named
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Figure 8 Total reward obtained during training by TSHCT, COMA, VDN, and QMIX evaluated
against Evaluation Team 3.

Full-size DOI: 10.7717/peerjcs.718/fig-8

Figure 9 Comparison of score, concede, and score-concede rate obtained during training by TSHCT,
COMA, VDN, and QMIX. The score, concede, and score-concede rate are evaluated against Evaluation
Team 3.

Full-size DOI: 10.7717/peerjcs.718/fig-9

here as Dueling DRQN. The proposed method combined with the Dueling DRQN is
compared with the TSHCT combined with the DRQN. The TSHCT with Dueling DRQN
is trained with 200k episodes using epsilon greedy exploration with self-play, similar to the
cases shown in Figs. 5, 7 and 9. For comparisons of rewards and score-concede rates, game
matches between the team trained by the TSHCT with DRQN, TSHCT-DRQN, and the
team trained by the TSHCT with Dueling DRQN, TSHCT-Dueling DRQN, are conducted.
The results of these matches are presented in Table 2.

In Fig. 10, the rewards obtained by the TSHCT with DRQN and the TSHCT with
Dueling DRQN are presented. Figure 10 shows the increasing trends of rewards. It is seen
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Table 1 Results and statistics of evaluationmatches for TSHCT against the baseline methods.

TSHCT vs COMA vsVDN vsQMIX

Score 7.09 ± 1.83 3.92 ± 1.38 3.82 ± 1.70
Concede 3.27 ± 1.54 4.23 ± 2.04 4.55 ± 0.89
Score difference 3.82 −0.30 −0.73
Score concede rate 68.4% 48.1% 45.6%

100K
episodes
trained
policy

Winning rate 100% 50% 20%
Score 5.55 ± 2.23 5.00 ± 1.13 3.45 ± 1.44
Concede 2.18 ± 1.59 2.82 ± 1.70 3.00 ± 1.41
Score difference 3.37 2.18 0.45
Score concede rate 71.8% 63.9% 53.5%

200k
episodes
trained
Policy

Winning rate 100% 90% 80%

Table 2 Results and statistics of evaluationmatches for TSHCT-Dueling DRQN against TSHCT-
DRQN.

TSHCT-Dueling DRQN vs TSHCT-DRQN

100k episodes trained policy 200k episodes trained policy

Score 5.09 ± 2.07 3.91 ± 1.78
Concede 3.82 ± 2.03 4.64 ± 2.19
Score difference 1.27 −0.73
Score concede rate 57.1% 45.7%

100k
episodes
trained
policy

Winning rate 60% 30%
Score 8.36 ± 2.64 5.82 ± 2.48
Concede 1.55 ± 1.30 2.27 ± 1.14
Score difference 6.81 3.55
Score concede Rate 84.4% 71.9%

100k
episodes
trained
policy

Winning rate 100% 80%

that the TSHCT with Dueling DRQN leads to a higher total reward as compared to the
TSHCT with DRQN. The maximum average score-concede rates of the team trained by
the TSHCT with Dueling DRQN against a team trained by the TSHCT with DRQN and
three evaluation teams are 65.59%, 81.49%, 81.52%, and 64.67%, respectively, as shown in
Fig. 11. The TSHCT with Dueling DRQN demonstrates improved score-concede rates over
Evaluation Team 1, 2, and 3 by 2.48%, 18.67%, and 12.59% as compared to that obtained
by the TSHCT with DRQN.

The policies trained by the TSHCT combined with DRQN and by the TSHCT combined
with Dueling DRQN are compared with game results. Table 2 lists the results of these
evaluation matches. For policies trained with the same number of training episodes, the
TSHCT combined with Dueling DRQN outperforms the TSHCT combined with DRQN,
achieving 60% and 80% winning rates with 100k episodes and 200k episodes, respectively.
For the cases in which one algorithm is trained with two times the number of episodes
of the opponent, i.e., 200k versus 100k, the algorithm that was trained for a longer time
achieves a higher winning rate. However, even for this case, the trained policy using the
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Figure 10 Rewards of TSHCT with DRQN and Dueling DRQN during training for 200k episodes with
self-play.

Full-size DOI: 10.7717/peerjcs.718/fig-10

Figure 11 Comparison of score, concede, and score-concede rate obtained during training by TSHCT-
DRQN, TSHCT-Dueling DRQN, COMA, VDN, and QMIX. The score, concede, and score-concede rate
are evaluated against a team trained by the TSHCT with DRQN and three evaluation teams.

Full-size DOI: 10.7717/peerjcs.718/fig-11

TSHCT combined with Dueling DRQN is more robust, achieving a 30% winning rate and
a score-concede rate of 45.7%.

Discussion
Efficient exploration and reward modeling remain a big challenge in complex multi-agent
environments. In a game such as robot soccer, using only team rewards, e.g., a sparse
score/concede reward or a sparse win/lose reward after the game is finished, is not enough
for the agents to learn robust behavior. To deal with this problem, Vinyals et al. (2019)
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use data from professional players at the beginning of the training in a supervised fashion
to train a Starcraft 2 agent. Without this supervised data, it is difficult for the models to
achieve a level capable of playing against good players and exploiting game strategies. In
this aspect, by the results obtained in the results section, additional information in the
form of individual role rewards that can be provided or learned unsupervised improves
the policies.

In relation to the improvement of team rewards during training, the results obtained in
the simulations indicate that it is difficult to train for cooperative behavior while performing
multiple roles. The results obtained by the proposed method and the baseline methods,
COMA, VDN, and QMIX, suggest that techniques that assign the contribution of each
robot in the reward received as well as the techniques that train individualized roles that
lead to stronger agents is needed. This can be addressed by the proposed method using two
training stages. The stage 1 induces the learning of individual roles while stage 2 causes
the learning of cooperative behavior and maximizing team rewards. From the observation
of graphs of the individual role rewards, as shown by reward plots in Figs. 4, 6 and 8, the
TSHCT achieves role rewards higher than those obtained by other algorithms. As robot
soccer is a game played against an opponent team, the main objective, more than having
high rewards during training, is to train multi-agent that performs well against opponents.
Observing the matches against evaluation teams, as shown in Figs. 5, 7 and Fig. 9, it is
noted that the proposed method is able to achieve substantially higher score-concede rate
when compared with other methods. These results suggest that the proposed method in
general works better than other methods. In the aspect of computational load, among the
proposed method and the baselines, the proposed method takes the second-longest time
to train the team for the same number of iterations because of its two stages.

In AI robot soccer, the policies are trained to maximize both individual role rewards
and a shared team reward. Individual role rewards are designed for the robots to learn
their roles, specifically to learn how to position and to learn how to control the ball to
perform passing and shooting. Team rewards are designed for the team to learn how to
score against the opponent team, avoid conceding, and also learn how to put pressure on
opponent robots during the game (keeping the ball near the opponent goal area as much
as possible during the game). The results obtained from simulation, using these rewards,
have shown that the robots are able to learn individual role rewards while trying to act
collaboratively. The GK learns to move to protect the goal against kicks of the opponent
team while trying to kick away if the ball is reachable. The defenders act mostly if the ball
is in the own field and try to recover the ball and kick the ball away from goal. When the
ball is in the opponent field, defenders mostly try to position themselves in the field to
avoid counter-attacks. Forwards are the most active players in the trained policies, trying
to always be near the ball and kick the ball along right direction into the opponent’s goal.

It is important to mention that, despite the results being obtained only in a simulated
environment, the final goal of the RL approaches is to transfer the policy in a simulation
to a real world scenario, such as playing a real robot competition in the RoboCup (Kitano
et al., 1995) contest. It is necessary to create a framework with the sensors available in the
real robots in real-time so that the work learned by simulation can be transferred to real
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robots without the need of re-training or with little re-training. Important research works
have already been investigated while transferring the results obtained from simulation to
real robots (Peng et al., 2018). To train robust models, the most important aspects are to
respect the partially observable modeling of the robot soccer environment and to consider
the variability of real world scenarios. For such purpose, noise that affects the state, the
action, and the physics modeling should be added to the simulation environment so that
less fine tuning is needed when deploying the trained policy.

CONCLUSION
This paper deals with multi-agent reinforcement learning with heterogeneous agents. The
classic way to solve this problem is using the CTDE framework. However, the CTDE
framework is less efficient for heterogeneous agents in learning individual behaviors. This
paper presents the TSHCT, a novel heterogeneous multi-agent reinforcement learning
method that allows heterogeneous agents to learn multiple roles for cooperative behavior.
In the proposed method, there are two training stages that are conducted in a serial
manner. The first stage is for training individual behavior through maximizing individual
role rewards, while the second stage is for training cooperative behavior while maximizing a
shared team reward. The experiments are conducted with 5 versus 5 AI robot soccer which is
relevant to the cooperative-competitive multi-agent environment. The proposed method
is compared with other baseline methods that maximize the shared reward to achieve
cooperative behavior. The proposed method and baseline methods, COMA, VDN, and
QMIX, are combined with value-based algorithms, such as DQN and dueling Q-networks.

Comparisons of total rewards and score-concede rates are presented in the paper. The
results show that the TSHCT training method is superior to other baseline algorithms in
role training and learning cooperative behavior. Themaximum average score-concede rates
of the TSHCT in comparison with the COMA, VDN, and QMIX are 79.01%, 62.85%, and
52.08%, respectively, representing the improvement achieved by the TSHCT in competitive
AI robot soccer matches.

Because similar action-observation history leads to similar rewards in AI robot soccer,
the training process can be unstable. To address this issue, an ablation study comparing
the TSHCT combined with Dueling DRQN and DRQN is conducted. The performances of
the TSHCT with DRQN and Dueling DRQN are measured by total rewards, score-concede
rates, and match results. As a result, the TSHCT combined with Dueling DRQN achieves
better performance when compared to the TSHCT combined with DRQN. The maximum
average score-concede rate of the TSHCT with Dueling DRQN in comparison with the
COMA, VDN, and QMIX are 81.49%, 81.52%, and 64.67%, respectively. This result
represents an improvement of 2.48%, 18.67%, and 12.59% as compared to the case of the
TSHCT combined with DRQN.

Simulation results show that the TSHCT is able to train an AI robot soccer team
effectively, achieving higher individual role rewards and higher total rewards, as compared
to other approaches that can be used for training to get cooperative behavior in a multi-
agent environment. As future work, this framework is to be combined with actor-critic
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policy-based multi-agent algorithms that can be applied in environments with continuous
actions.
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ABSTRACT
Hearing deficiency is the world’s most common sensation of impairment and
impedes human communication and learning. Early and precise hearing diagnosis
using electroencephalogram (EEG) is referred to as the optimum strategy to deal
with this issue. Among a wide range of EEG control signals, the most relevant
modality for hearing loss diagnosis is auditory evoked potential (AEP) which is
produced in the brain’s cortex area through an auditory stimulus. This study aims to
develop a robust intelligent auditory sensation system utilizing a pre-train deep
learning framework by analyzing and evaluating the functional reliability of the
hearing based on the AEP response. First, the raw AEP data is transformed into
time-frequency images through the wavelet transformation. Then, lower-level
functionality is eliminated using a pre-trained network. Here, an improved-VGG16
architecture has been designed based on removing some convolutional layers and
adding new layers in the fully connected block. Subsequently, the higher levels of the
neural network architecture are fine-tuned using the labelled time-frequency
images. Finally, the proposed method’s performance has been validated by a reputed
publicly available AEP dataset, recorded from sixteen subjects when they have
heard specific auditory stimuli in the left or right ear. The proposed method
outperforms the state-of-art studies by improving the classification accuracy to
96.87% (from 57.375%), which indicates that the proposed improved-VGG16
architecture can significantly deal with AEP response in early hearing loss diagnosis.

Subjects Bioinformatics, Artificial Intelligence, Brain-Computer Interface, Data Mining and
Machine Learning
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INTRODUCTION
Hearing deficiency is the widespread form of human sensory disability; it is the partial or
complete inability to listen to the ear’s sound. The world health organization (WHO)
reports that 466 million people were living with hearing loss in 2018, projected to exceed
630 million by 2030 and more than 900 million by 2050 (World Health Organization
(WHO), 2021). An early and effective hearing screening test is essential for address the vast
population concern. That helps to reduce the hearing deficiency by taking necessary
steps at an appropriate time. Conventional listening tests and audiograms appear to be
subjective assessments that significantly demand medical and health services. The
audiogram reflects the hearing threshold across the speech frequency spectrum, usually
between 125 and 8,000 Hz. The traditional hearing impairment testing technique is very
time-consuming, takes sufficient clinical time and expertise to interpret and maintain
since it requires the person to respond directly. In the application of hearing aid, other
issues, such as hearing loss’s consequence (Holmes, Kitterick & Summerfield, 2017), the
circumstances of the auditory stimulus (such as the background noise of the stimulus,
locations of the stimulus (Das, Bertrand & Francart, 2018; Das et al., 2016) ), attention-
altering techniques is still an open question.

Various hearing impairment testing techniques have been conducted to address these
issues, and among them, EEG-based auditory evoked potentials (AEPs) are most widely
used (Zhang et al., 2006; Mahmud et al., 2019). Nowadays, the classification of AEP
signal is most commonly used in many brain-computer interface (BCI) applications (Gao,
Wang & Gao, 2014) and brain hearing issues (Sriraam, 2012). In fact, the AEP signal is
widely used to recognize hearing capability, assessment, and neurological hearing
impairment identification. The AEP signals are reflected by the brain’s electrical activity
changes in the body’s sensory mechanisms in response to the auditory stimulus.
The diagnosis of hearing loss typically involves four main stages: acquisition of data, data
pre-processing, feature extraction and selection, and classification. The feature extraction
is traditionally conducted by analyzing the time-domain, frequency-domain, and time-
frequency domain techniques, which help to extract the information from the original raw
data. The extracted features are then used as an input to the machine learning or deep
learning models for training. However, traditional diagnosis methods have some
drawbacks. For example, traditional hearing loss approaches are often based on manual
feature selection. As a consequence, if the manually chosen features are ineffective for this
task, the hearing loss recognition performance will decrease considerably. Furthermore,
handcrafted features for different classification tasks are task-specific, meaning that
features that render predictions correctly are not acceptable under certain conditions
for other scenarios (Acir, Erkan & Bahtiyar, 2013; Acir, Özdamar & Güzeliş, 2006).

Although the researchers have employed a wide range of machine learning and deep
learning algorithms, recognizing the most effective classifier is still an open question.
Among machine learning-based classifiers, support vector machine (SVM) (Mahmud
et al., 2019), k-nearest neighbors (k-NN) (Thorpe & Dussard, 2018; Rashid et al., 2021),
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artificial neural network (ANN) (Mccullagh et al., 1996), linear discriminant analysis
(LDA) (Grent-‘t-Jong et al., 2021) Naïve Bayesian (NB) (Shirzhiyan et al., 2019) are
widely used in neurological response classification. Nowadays, the convolutional neural
networks (CNNs) are the most preferred approach in the different classification tasks,
particularly in image classification (Lecun, Bengio & Hinton, 2015). In some recent studies,
CNNs have shown promising performances in EEG signal classification: in seizure
detection (Ansari et al., 2019), depression detection (Liu et al., 2018), and sleep stage
classification (Ansari et al., 2018). Ciccarelli et al. (2019) proposed a novel architecture of
the neural network and showed that their approach outperforms the linear methods in
decision windows of 10s. They have used eleven subjects in the experiment: with the
wet EEG, the decoding accuracy was improved from 66% to 81%, and with the dry EEG,
the decoding accuracy was improved from 59% to 87%. McKearney & MacKinnon
(2019) used a deep neural network approach to classify paired auditory brainstem
responses. They used 232 paired ABR waveforms (190 paired ABR waveforms for training
the model and 42 paired waveforms for performance evaluation) from eight normal
hearing subjects and achieved 92.9% testing accuracy. Although they achieved an excellent
performance to identify the auditory brainstem response, the testing set is too small,
and more dataset is needed to test the model performance.Mccullagh et al. (1996) reported
a 73.7% accuracy using the artificial neural network to classify 166 auditory brainstem
responses (ABRs) with 2,000 repetitions. Ibrahim, Ting & Moghavvemi (2019) used
multiple classification techniques for detecting the hearing condition; the SVM algorithm
outperforms the other algorithms by achieving a classification accuracy of 90%. They used
a nonlinear feature extraction method to extract adequate information from the AEP
signals. Dietl & Weiss (2004) evaluated an application to achieve detection of frequency-
specific hearing loss where they used the wavelet packet transform (WPT) as a feature
extraction method and support vector machines (SVM) classifier to transient evoked
otoacoustic emissions (TEOAE). They achieved a maximum of 74.7% accuracy with the
testing dataset. Nonetheless, the overall accuracy is not favourable enough to be utilized in
real-life applications. Tang & Lee (2019) proposed a novel hearing deficiency diagnosis
method using three-level wavelet entropy, followed by MLP, trained by hybrid Tabu
search-Particle Swarm Optimization (TS-PSO). Their approach achieved 86.17% testing
accuracy; it still needs improvement for real-time applications. Sanjay et al. (2020) used
machine learning approaches for human auditory threshold prediction. The absolute
threshold test (ATT) method was used for feature extraction from the auditory signals.
The extracted feature was then classified using multiple classification methods. Among all
the classification methods, a maximum of 93.94% accuracy was achieved with the SVM
classifier. Xue et al. (2018) used participants’ articulatory movements with or without
hearing impairment during nasal finals for hearing impairment diagnosis. Six different
kinematic features: standard deviation of velocity, minimum velocity, maximum velocity,
mean velocity, duration, displacement was used to extract the information from the
hearing impairment (HI) patient and normal hearing (NH) participants. The classification
was conducted with a support vector machine, radial basis function network, random
forest, and C4.5. The maximum accuracy was 87.12% using a random forest classifier
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via (displacement and duration feature). Zhang et al. (2006) proposed an auditory
brainstem response classification method. They used wavelet analysis for feature extraction
and Bayesian networks to classify the auditory responses. Discrete wavelets transform
(DWT) was used to extract the time-frequency information from the raw signals. A
maximum of 78.80% testing accuracy was achieved in their proposed approach; it needs
more improvement in testing accuracy.

The emphasis in our study is on a concise decision window. However, a concise window
contains less information and more difficult to achieve high performance but provide an
effective solution for early detection of hearing disorder. The short decision window is
considered one of the prerequisites to develop the real-life application, but limited
studies have been carried out to investigate this issue (Deckers et al., 2018). Moreover,
selecting a short decision window makes the system faster by reducing the computational
complexity of the system. On the other hand, Deep learning (DL) approaches can
provide an effective solution because of their effective feature learning capability to
overcome the above limitations (Krizhevsky, Sutskever & Hinton, 2017; Nossier et al., 2019;
Shao et al., 2019; Bari et al., 2021; Mahendra Kumar et al., 2021). Deep learning models
have several hidden layers that can explicitly learn hierarchical representations. From
model training, deep architectures can select discriminatory representations, which are
helpful for precise predictions according to the training data in subsequent classification
stages. Although the DL models have successful application in hearing loss diagnosis tasks,
there are still some issues with DL approaches. A few investigations (Ciccarelli et al.,
2019;McKearney &MacKinnon, 2019) have been conducted using deep models with more
than 10 hidden layers for hearing loss diagnosis. A large number of labelled data and
computations resources are typically required during the training model from scratch. In
the proposed study, we used the transfer learning (TL) method to address the challenges
of training a deep model from scratch. The TL method is used to expedite the deep
learning model training phase and effectively learns the hierarchical representations.
The process is accomplished by using the pre-trained TL method that has been pre-trained
on vast datasets of natural images. The proposed pre-trained model provides the lower-
level weights for the target neural network, while the higher-level weights are fine-tuned
for the hearing deficiency diagnosis task. Consequently, the proposed TL method offers a
rational initialization for the target model and decreases the number of model’s
parameters. In this manner, TL significantly enhances the performance of the training
process. Here, we summarized the main contribution of this paper.

! We have presented a hearing deficiency identification system based on deep CNN,
where a transfer learning strategy has been used to improve the training process. To fit
the AEP dataset in our model, we fine-tune the high-level parameters, consisting of
unfreezing some part of the pre-training model and re-training it. The lower-level
parameters are transferred from the previous trained deep architecture.

! In the proposed approach, we also changed some high-level parameters, reduced the
number of parameters and complexity of the TL architecture, which helps in improving
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the performance of the VGG16 model for our dataset and reduces the computational
time of the training process.

! The experiment is conducted in a short decision window (1s and 2s), minimizing the
impact of additional features and reducing time consumption, which shows the
proposed system robustness and applicability in real-life application.

The rest of the manuscript is arranged as follows: a detailed data description, data pre-
processing, and the transformation process of CWT are implemented in the Materials and
Methodology section. A detailed description of the development of the proposed pre-
trained model and fine-tuning procedure for hearing deficiency diagnosis is also
described in this section. Experimental performance to determine the models’ validation is
described in the Result of the Experiment and Analysis section. The Discussion section
exhibits a discussion on the comparison of the proposed model with related studies,
along with the key advantages of our proposed method over the previous studies.
The Conclusion section represents the outcome of the present study.

MATERIALS AND METHODOLOGY
The aim of this study is to build an intelligent auditory sensation system for hearing loss
diagnosis with high performance. The overall procedure of the proposed hearing loss
diagnosis method is demonstrated in Fig. 1. The proposed framework consists of few steps,
including data collection, pre-processing, time-frequency analysis, and building a pre-
trained model with fine-tuning. We have used a publicly available online dataset in the
data collection phase instead of data collection ourselves. We converted the raw signal into
a time-frequency image using continuous wavelet transform (CWT). Then, the proposed
deep CNN (improved-VGG16) method is applied in the time-frequency images for
diagnosis the hearing loss. In the TL model, the pre-trained ImageNet dataset has been
used, and the size of the images is 224 " 224 pixels in RGB. The entire dataset has been
converted into a time-frequency image after data collection and resized in height-224 "

width-224 " depth-3. The VGG16 uses natural images which are different from the time-
frequency images of AEP. So, to fit the AEP dataset in the TL model, we replaced some
VGG16 layers with the new layers and then fine-tuned the improved VGG16 model.

Data description
Experimental AEP datasets are provided by ExpORL, Dept. Neurosciences, KULeuven,
and Dept. Electrical Engineering (ESAT), KULeuven (Das, Francart & Bertrand, 2020).
A 64-channel BioSemi Active Two system was used for recording the AEP data, which was
8,196 Hz sampling rate. The entire data was collected from 16 normal-hearing subjects,
and the trial was repeated 20 times from each subject. The recordings were conducted in a
soundproof, electromagnetically shielded space. The auditory stimuli were presented at
60 dBA by Etymotic ER3 insert earphones and were low-pass filtered with a cut-off
frequency of 4 kHz. As simulation software, APEX 3 was used (Francart, van Wieringen &
Wouters, 2008). Three male Flemish speakers narrated four Dutch stories as auditory
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stimulation (Radioboeken, 2021). Every story lasted 12 min and was divided into two
segments of 6 min each. Silent segments that lasted more than 500 ms were shortened to
500 ms. The stimuli were equal in root-mean-square intensity and perceived as equally
loud. The experiment was divided into eight sections, each lasting six minutes. Subjects
were presented with two parts of two storylines in each trial. The left received one part,
while the right ear received the other part. To prevent the lateralization bias described by
Das et al. (2016), the attended ear was alternated over successive trials to ensure that
each ear received an equal volume of data. Each subject received stimuli in the same order,
either dichotically or after head-related transfer function (HRTF) filtering (simulating
sound coming from ±90°). As with the attended ear, the HRTF/dichotic condition was
randomized and balanced within and over subjects.

Data preprocessing
The pre-processing of the AEP data is the first phase after data collection. In this study,
the trials were filtered with a high pass (0.5 Hz cut off) and downsampled from the
sampling rate of 8,192 Hz to 128 Hz. Here, we have investigated sixteen subjects, and
each trial has been segmented into the same length. The entire dataset has been segmented
into short decision windows (1s and 2s) and considered each decision window an
observation. The straightforward reason to select the concise decision windows is to reduce
the computational complexity and make the system faster, which will help detect the
early hearing disorder. From each subject, 200 observations have been picked, and finally,
we achieved a total of 3,200 observations. After data filtering and window selection, the

Figure 1 The overall procedure of hearing deficiency diagnosis method.
Full-size DOI: 10.7717/peerj-cs.638/fig-1
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AEP data of subject-1, channel-1 in the time domain, is shown in Fig. 2 when the subject
hears auditory stimulus through headphones defined as left and right labels.

CWT for time-frequency analysis
CWT is a time-frequency feature extraction approach that offers multi-scale signal
refinement by scaling and translating operations. After the data pre-processing step, the
segmented dataset transforms from the time domain to the time-frequency domain using
the CWT.

The CWT can automatically adapt the time-frequency signal analysis criteria and
clearly explain the signal frequency change with time (Yan, Gao & Chen, 2014). The CWT
is widely used for feature extraction and can be considered a mathematical tool for
transforming time-series into a different feature space. This study uses CWT as a feature
extraction method that converts the raw signal into 2-D time-frequency images from 1-D
time-domain signals. An internal signal operation and a series of wavelets are performed
by the wavelet transforms. The mother wavelet is scaled and translated to create the
wavelet set, which is a family of wavelets w tð Þ, shown as

wS;s tð Þ ¼ 1ffiffiffi
S

p w
t & s
S

" #
(1)

Here, S represents the scale parameter inversely related to frequency, and t represents
the translation parameter.

The signal x tð Þ can be achieved by a complex conjugate convolution operation,
mathematically defined as follows (Huang & Wang, 2018):

W s; sð Þ ¼ x tð Þ;wS;s ¼
1ffiffi
s

p
Z

x tð Þw" t & s
S

" #
dt (2)

Figure 2 AEP raw data plotting in 2s decision window: (A) hear auditory stimulus with the left ear
(B) hear auditory stimulus with the right ear. Full-size DOI: 10.7717/peerj-cs.638/fig-2
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where w" 'ð Þ denotes the complex conjugate of the above function w 'ð Þ and This
operation decomposes the signal x tð Þ in a series of wavelet coefficients, in which the base
function is the wavelet family. In the equation, the s and τ are two types of parameters in
the family wavelets. The signal x(t) is transformed and projected to the time and scale
dimensions of the family wavelets.

In this study, we use wavelet basis functions (Mother Wavelets). The time-frequency
images are then used as the input of the proposed TLmodel. The transformation process of
CWT is shown in Fig. 3.

Finally, we concatenate the 64 channels data in (M"M) for preparing an observation,
where the value of M is set to eight. So, each observation provides the time-frequency
information of 64 channels. Figure 4 shows the time-frequency image of 64 channels.

Hearing deficiency diagnosis using deep TL
The proposed system presented a deep TL method based on improved-VGG16
architecture for hearing loss diagnosis. The VGG16 uses natural images which are different
from the time-frequency images of AEP. The improvement consists of replacing some
VGG16 layers with the new layers and then fine-tuning the layers to fit the time-frequency
AEP dataset in the model.

Convolutional neural network architecture
LeCun et al. (1998) proposed the convolutional neural networks (CNN), one of the best
pattern recognition methods. The locally trained filters are used in this system to
extract the visual features through the input image. CNN’s internal layer structure consists
of a convolution layer, pooling layer, and fully connected layer. The complete procedure of
CNN is shown in Fig. 5.

! Convolution layer

The convolutional operations provide the more advanced feature representation.
Several fixed-size filters allow the complex functions to be used in the input image (Ravi
et al., 2017). The same weights and bias values are used in the whole image in each filter.
This technique is called the weight-sharing mechanism, and it makes it possible to

Figure 3 The transformation process from time-domain signal to time-frequency domain image.
Full-size DOI: 10.7717/peerj-cs.638/fig-3

Islam et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.638 8/28

http://dx.doi.org/10.7717/peerj-cs.638/fig-3
http://dx.doi.org/10.7717/peerj-cs.638
https://peerj.com/computer-science/


represent the entire image with the same characteristic. A neuron’s local receptive field
reflects the neuron’s region in the previous layer. This study uses the ‘ReLU activation
function (Alpaydin, 2021). Let c × c is the size of the kernel or filter, and i represent the

Figure 4 The time-frequency image of 64 channels data. Full-size DOI: 10.7717/peerj-cs.638/fig-4
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time-frequency image. The weight and bias of the filter are denoted by w and b,
respectively. The output O0;0 can be computed using Eq. (3), where f denotes the activation
function. This study used the ReLU activation function. In most of the classification tasks,
the ReLU activation function has demonstrated superior performance in terms of
accelerating convergence and mitigating the issue of vanishing gradients (Krizhevsky,
Sutskever & Hinton, 2017). The mathematical representation of the ReLU activation
function can also be seen in Eq. (4),

O0;0 ¼ f bþ
Xc

t¼0

Xc

r¼0

wt;ri0þt;0þr

 !

(3)

f xð Þ ¼ x x. 0
0 else

:

$
(4)

! Pooling Layer

The pooling method is used in the feature maps, which have gone through convolution
and activation function. The pooling layer computes the local average or maximum value,
reducing the complexity and retaining the essential features, thus enhancing feature
extraction performance.

! Fully connected layer

The convolutional and pooling layers alternately transfer the image features; after
that, the fully connected layer received the image feature as an input. One or more hidden
layers may have in the fully connected layer. By the data from the previous layer, each
neuron multiplies the connection weights and adds a bias value. Before transmission to the
next layer, the measured value is passed via the activation function. Eq. (5). displays
neuronal calculations in this layer.

fc1 ¼ f ðbþ
XM

q¼1

w1;q " OqÞ (5)

where f is the activation function, w is the weight vector, O is the input vector of the qth

neuron, and b is the bias value.

Figure 5 Typical convolutional neural network architecture.
Full-size DOI: 10.7717/peerj-cs.638/fig-5
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! SoftMax

The SoftMax activation function variates the logistic regression adapted to multiple
classes and used in the output layer for classification purposes. It can be determined by
Eq. (6) (Sermanet et al., 2013),

classj ¼
exp sfj

% &
P

q exp sfq
% & (6)

Proposed pretrained model building and fine-tuning
In the convolutional neural network, the convolutional layers are used to extract the
features from the dataset in a different manner, whereas the fully connected layers are
used to classify the extracted features. The most forthright approach for enhancing the
feature learning capability is to increase the depth or width of the deep neural network.
However, this can lead to two issues: the first concern is that a deeper or wider model
typically has more parameters, rendering the expanded network more vulnerable to
overfitting. The second concern is that it raises the use of computing resources
substantially.

To overcome these flowing issues and extract the AEP feature efficiently, the VGG16
network utilizes several parallel layers with different convolutional kernel sizes.
It concatenates the outputs at the end of the pre-trained network. In the proposed TL
model, we replace some layers of VGG16 with the new layers to fit the AEP dataset in
the pre-trained network, which enhances hearing loss identification performance.
The replacement process consists of adding some dense layers in the fully connected block
of VGG16 architecture and adding the dropout layers after every dense layer. A densely
connect layer learns features from all the previous layer’s features. The dense layer
performs a matrix-vector multiplication, and with the help of backpropagation, the
parameters can be trained and updated. The dense layer is used to change the vector’s
dimensions and applies in other operations like rotation, scaling, and translation. Mele &
Altarelli (1993) reported that on the CIFAT-10 dataset, the error rate 16.6% when
testing the dataset in a convolutional neural network. They improved the model’s
performance with an error rate of 15.6% when the dropout layer was utilized in the last
hidden layer. We add the dropout layer after every dense layer in the fully connected block
to reduce the model complexity and prevent overfitting. The neuron is temporarily
dropped with the probability p at each iteration. Then, at every training step, the
dropped-out neuron is resampled with the probability p, and a dropped-out neuron will be
active at the next step. Here, the hyperparameter p is the dropout rate. Since the VGG16
uses the ‘ImageNet’ weight, which is trained with the natural image, and the proposed
time-frequency images are not similar, more layers need to be fine-tuned where the
weight is updated with the ‘ImageNet’ weight. This process helps to fit the time-frequency
images with the TL architecture. The proposed fine-tuning consists of unfreezing some
pre-trained network layers and re-train with the AEP dataset.
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In the proposed approach, at first, we remove all the layers of VGG16 after the first 3 × 3
convolution layer of convolutional block five, as shown in Fig. 6, and replace the fully
connected block there. Then, we add multiple dense layers at the end of the VGG16 model,
and after every dense layer, we add the dropout layer. In the case of CNN, the
convolutional layers extract the feature from the dataset, whereas the fully connected
layers try to classify the extracted features. Consequently, adding more layers to the dense
section can empower the network’s robustness and improve classification accuracy. So,
despite using the two dense layers of the VGG16, here, we add three new dense layers
units of 1,024, 512, and 288 in the fully connected block. Then, we add a dropout layer
after each dense layer, and the dropout value is set to 0.2, 0.4, and 0.6, respectively.
The reason behind adding the dropout layers is that the deep learning model reduces
the performance due to overfitting, and the dropout layers reduce the model complexity
and prevent overfitting. These techniques help in enhancing the performance in the
hearing loss diagnosis. We also remove the top layer and adding a SoftMax layer (output
layer) based on the targeted class. Based on the hyperparameters tuning technique, the
proposed approach uses the ‘Adam’ optimizer to adjust the network weight with the batch
size 64, and the learning rate is set to 0.0001. The parameters selection is made with the
help of the ‘Keras-Tuner’ library. This library helps to select the most optimal set of
hyperparameters for our architecture. Hyperparameters are the variable that governs
the training process of the DL model and structure. There are two types of
hyperparameters: first, model hyperparameters that help in selecting the number and
width of the multiple hidden layers. Second, algorithm hyperparameters help to influence
the speed and quality of the learning algorithm. All the hyperparameters selected to
build the proposed architecture are based on ten different runs of the model. The following
steps are used to train the model for hearing loss identification, shown in Box 1.

The detailed information of the parameter of the proposed TL architecture is shown in
Table 1. Here, C means the targeted class.

During the training process, all the layers before convolutional block four are frozen.
The weights are updated in the trainable layers, which helps in minimizing the errors
between the predicted labels and the actual labels. The complete architecture of the
proposed TL has demonstrated in Fig. 6.

RESULT OF THE EXPERIMENT AND ANALYSIS
This section represents the proposed hearing loss diagnosis method’s performance
based on CWT and deep CNN architecture (improved-VGG16). First, we converted the
time domain signal to time-frequency domain images. Then, the images are resized into
height-224 " width-224 " depth-3, which is the suitable size of the proposed model.
In this study, two different decision windows were tested: 1s and 2s. This term refers to
the quantity of data required to make a single left/right decision. The practical reason
behind selecting the shorter decision window is to detect the hearing condition quickly.
The entire dataset was randomly split into the training set and testing set. Here, we
used 70% dataset to train the architecture, and the rest of the dataset was used to test the
model’s validation. This experiment has conducted with sixteen subjects where the subjects
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Figure 6 Transfer learning procedure of the proposed method.
Full-size DOI: 10.7717/peerj-cs.638/fig-6
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hear the auditory track. Based on listening to the auditory track with the ear, the dataset
has been divided into two classes. The ‘Class1’ means the subject hears the auditory
track with the left ear and the ‘Class2’ means the subject hears the auditory track with
the right ear. With the (1s and 2s) decision windows, we randomly selected 200
observations from each subject. A total of 2,240 observations has been used for training the
model and 960 observations for testing the performance.

Box 1 Training procedure of proposed TL architecture.

The training steps of the proposed TL architecture:

Step 1: Load the VGG16 base model with the pre-trained weights.

Step 2: Freeze some layers in the base model by setting trainable = False. In the nontrainable layers, the
weights will not train.

Step 3: Create a new model by replacing some layers of VGG16 with new layers and retrain the layers
with the layers where the trainable = True.

Step 4: Train the new model with the dataset.

Table 1 Parameter of proposed TL architecture.

Layer (type) Output Number of parameters

Input 224 * 224 * 3 0

Block1-Conv2D 224 * 224 * 64 1,792

Block1-Conv2D 224 * 224 * 64 36,928

Block1-MaxPooling2D 112 * 112 * 64 0

Block2-Conv2D 112 * 112 * 128 73,856

Block2-Conv2D 112 * 112 * 128 147,584

Block2-MaxPooling2D 56 * 56 * 128 0

Block3-Conv2D 56 * 56 * 256 295,168

Block3-Conv2D 56 * 56 * 256 590,080

Block3-Conv2D 56 * 56 * 256 590,080

Block3-MaxPooling2D 28 * 28 * 256 0

Block4-Conv2D 28 * 28 * 512 1,180,160

Block4-Conv2D 28 * 28 * 512 2,359,808

Block4-Conv2D 28 * 28 * 512 2,359,808

Block4-MaxPooling2D 14 * 14 * 512 0

Block5-Conv2D 14 * 14 * 512 2,359,808

Flatten-Flatten 1 * 1 * 100352 0

fc1-Dense 1*1*1024 102,761,472

dropout-Dropout 1*1*1024 0

fc2-Dense 1*1*512 524,800

dropout_1-Dropout 1*1*512 0

Fc3-Dense 1*1*288 147,744

dropout_2-Dropout 1*1*288 0

Output-Dense C 288*C+C
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For 1s window length, the performance of the proposed approach for each subject in
terms of accuracy, precision, recall, f1-score and cohen’s kappa of all subjects is
demonstrated in Table 2.

Table 2 illustrates that in the case of subject-5, subject-7, and subject-16, our network
achieves an unprecedented performance of 100%. Except for six subjects (Subjects-3, 6, 9,
11, 13 and 14), all subjects have achieved more than 90% accuracy. However,
comparatively lower classification accuracy has been noticed by Subjects-3 (86.67%),
Subject-6 (83.33%), Subject-9 (76.67%), Subject-11 (81.67%), Subject-13 (78.33%), and
Subject-14 (76.67%). In the case of 1s decision window length, the average classification
accuracy is 91.56%, whereas the standard deviation is 8.91%. Besides classification
accuracy, other performance evaluation techniques (such as precision, recall, f1-score, and
cohen kappa score) are also calculated to check the proposed model’s acuity. The average
value of precision, recall, f1-score, and cohen kappa for sixteen subjects are 90.74%,
93.63%, 91.92%, 82.71%, respectively, whereas standard deviations are 10.47%, 8.25%,
8.79%, 18.34%, respectively. Figure 7 shows the overall accuracy and loss curve of the
proposed TL method for the 1s decision window.

For 2s window length, the performance of the proposed architecture is illustrated in
Table 3. In this case, a maximum of 100% accuracy has achieved for subject-6, subject-7,
subject-10, subject-16. Here, in the case of subject-16, we achieved 1.67% more
accuracy compared to the 1s time window analysis. However, the proposed architecture
achieves an unprecedented improvement (more than or equal to 90% for decision

Table 2 Performance of proposed model for 1s decision window.

Subject Accuracy Precision Recall F1 Score Cohens
Kappa

Subject-1 0.9833 0.9688 1.0 0.9841 0.9666

Subject-2 0.9667 1.0 0.9355 0.96667 0.9334

Subject-3 0.8667 0.8108 0.9677 0.8824 0.7312

Subject-4 0.9667 0.9393 1.0 0.9688 0.9331

Subject-5 1.0 1.0 1.0 1.0 1.0

Subject-6 0.8333 0.8387 0.8387 0.8387 0.6663

Subject-7 1.0 1.0 1.0 1.0 1.0

Subject-8 0.95 0.9667 0.9355 0.9508 0.9

Subject-9 0.7667 0.7167 0.7933 0.7367 0.4833

Subject-10 0.9833 1.0 0.9677 0.9836 0.9667

Subject-11 0.8167 0.7409 1.0 0.8578 0.6241

Subject-12 0.9833 1.0 0.9632 0.9853 0.9567

Subject-13 0.7833 0.8214 0.7419 0.7797 0.5676

Subject-14 0.76667 0.7453 0.8365 0.7892 0.5378

Subject-15 0.9833 0.9688 1.0 0.9841 0.9666

Subject-16 1.0 1.0 1.0 1.0 1.0

Average ± SD 91.56% ± 8.91% 90.74% ± 10.47% 93.63% ± 8.25% 91.92% ± 8.79% 82.71% ± 18.34%
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windows of 2s) in each subject. The lowest accuracy of 90% has been obtained in
subject-13.

With the 2s decision window, the average value of accuracy precision, recall, f1-score,
and cohen kappa for sixteen subjects are 96.87%, 96.49%, 97.57%, 97% and 93.73%,
respectively. On the other hand, the standard deviation of precision, recall, f1-score, and
cohen kappa are 2.78%, 3.50%, 2.76%, 2.64% and 5.57%, respectively. Figure 8 shows the
overall accuracy and loss curve of the proposed TL method.

Figure 7 The overall accuracy and loss curve of the proposed TL method for 1s decision window.
Full-size DOI: 10.7717/peerj-cs.638/fig-7

Table 3 Performance of proposed model for 2s decision window.

Subject Accuracy Precision Recall F1 Score Cohens Kappa

Subject-1 0.9833 1.0 0.9677 0.9836 0.9666

Subject-2 0.9666 0.9393 1.0 0.9687 0.9331

Subject-3 0.95 0.9666 0.9354 0.9508 0.9

Subject-4 0.9666 0.9393 1.0 0.96875 0.9331

Subject-5 0.9833 1.0 0.9677 0.9836 0.9666

Subject-6 1.0 1.0 1.0 1.0 1.0

Subject-7 1.0 1.0 1.0 1.0 1.0

Subject-8 0.95 0.9375 0.9677 0.9523 0.8997

Subject-9 0.9666 0.9677 0.9677 0.9677 0.9332

Subject-10 1.0 1.0 1.0 1.0 1.0

Subject-11 0.9333 0.9354 0.9354 0.9354 0.8665

Subject-12 0.95 0.9666 0.9354 0.9508 0.9

Subject-13 0.9 0.8787 0.9354 0.9062 0.7993

Subject-14 0.9666 0.9393 1.0 0.9687 0.9331

Subject-15 0.9833 0.9687 1.0 0.9841 0.9665

Subject-16 1.0 1.0 1.0 1.0 1.0

Average ± SD 96.87% ± 2.78% 96.49% ± 3.5% 97.57% ± 2.76% 97% ± 2.64% 93.73% ± 5.57%
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To illustrate the performance of the proposed TL model in depth, the confusion
matrix of all subjects has been given separately. A confusion matrix can be used to estimate
the classification accuracy of a model visually. Figure 9 represent the confusion matrix with
1s decision windows analysis, whereas Fig. 10 represent the confusion matrix with 2s
decision window analysis. In both figures, the letter A to P denotes the confusion matrix of
subject-1 to subject-16, respectively.

The correct predictions are on the diagonal in the confusion matrix, while the incorrect
predictions are off the diagonal. For example, in the case of Fig. 10A that denotes subject-1,
a total of 59 observations (29 observations for class1, 30 observations for class2) have
been recognized accurately among 60 observations. In both decision windows, the total
testing set for sixteen subjects consists of 960 observations, in which 464 observations are
in 'Class1', and 496 observations are in 'Class2'. For 1s decision windows, our network
correctly detects 876 observations whilst 84 observations have been misclassified (shown in
Fig. 9). On the other hand, for 2s decision windows, 930 observations have been accurately
detected, whereas only 30 observations have been misclassified (shown in Fig. 10).
Therefore, 2s decision windows provide a significant performance compared to the 1s
decision windows.

Furthermore, to study the relationship between window length and detection
performance, this study includes a comparison. Figure 11 visualizes the average
performance of two decision windows over our network.

Figure 11 shows that the proposed TL network with a 2s decision window
significantly improves recognition accuracy compared to the 1s decision window analysis.
The main goal of this study is to enhance the performance for detecting the hearing
condition with a concise decision window, so that we can efficiently use this system in real-
life application. For this purpose, first, we analyze the 1s decision window and achieve
91.56% recognition accuracy; still not so high to apply this system in real-life application.
Furthermore, to enhance the performance of our proposed diagnosis system, we move on
to the 2s decision windows length, and this time we achieve a 5.31% improvement in

Figure 8 The overall accuracy and loss curve of the proposed TL method for 2s decision window.
Full-size DOI: 10.7717/peerj-cs.638/fig-8
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accuracy compared to the 1s decision window length. In the case of other performance
evaluation techniques such as precision, recall, F1 score and Cohen’s kappa, we achieve
5.74%, 3.94%, 5.08%, and 11.02%, improvement, respectively. The improvement indicates
the robustness and applicability of our proposed system.

Despite the impressive performance of the proposed system, in some cases, the
performance of our network is unsatisfactory. The possible reason for this poorer
performance compared to the other successful cases is that in EEG-based BCI application
studies, a small SNR and different noise sources are among the greatest challenges.
Furthermore, Unwanted signals contained in the main signal can be termed noise, artifact,

Figure 9 Confusion matrix for 1s decision windows: (A) subject-1, (B) subject-2, (C) subject-3, (D) subject-4, (E) subject-5, (F) subject-6,
(G) subject-7, (H) subject-8, (I) subject-9, (J) subject-10, (K) subject-11, (L) subject-12, (M) subject-13, (N) subject-14, (O) subject-15,
(P) subject-16. Full-size DOI: 10.7717/peerj-cs.638/fig-9
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or interference. Sometimes, the brain may produce some unwanted noise due to the lack of
the subject’s proper attention or muscle movement, affecting the detection results. In the
experiment, we select concise decision windows (1s and 2s), and working with a short
window have many advantages but still very challenging (Geirnaert, Francart &
Bertrand, 2020). For these possible reasons, some subjects may provide a lower accuracy
compared to the other’s subject (shown in Table 2 and Table 3). Suppose in the 2s decision

Figure 10 Confusion matrix for 2s decision windows: (A) subject-1, (B) subject-2, (C) subject-3, (D) subject-4, (E) subject-5, (F) subject-6,
(G) subject-7, (H) subject-8, (I) subject-9, (J) subject-10, (K) subject-11, (L) subject-12, (M) subject-13, (N) subject-14, (O) subject-15,
(P) subject-16. Full-size DOI: 10.7717/peerj-cs.638/fig-10
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windows length; if we avoid the two subjects that perform poorer than the other subjects
(shown in Table 3), we will achieve 97.62% recognition accuracy. However, the average
training and testing accuracy of sixteen subjects with 2s windows length is 100% and
96.87%, respectively, after 100 epochs, whereas the standard deviation is 2.78%.

Furthermore, to study the robustness of the proposed method with a 2s decision
window (1s decision windows is not considered in the subsequent analysis), the
performance of the proposed model has been compared with other widely used TL
architectures. Six popular transfer learning algorithms namely, InceptionResNetV2
(Längkvist, Karlsson & Loutfi, 2014), MobileNet (Pan et al., 2020), ResNet50
(He et al., 2016), VGG16 (Simonyan & Zisserman, 2015), VGG19 (Simonyan & Zisserman,
2015), and Xception (Chollet, 2017) have employed to the time-frequency image of AEP
dataset for hearing loss diagnosis. The input size is the same (height- 224" width-224"

depth-3) for all the TL architectures. Figure 12 illustrates the performance comparison of

Figure 11 Hearing deficiency detection performance of the proposed TL architecture for two
different window lengths. Full-size DOI: 10.7717/peerj-cs.638/fig-11

Figure 12 The performance comparison with other pre-trained architectures.
Full-size DOI: 10.7717/peerj-cs.638/fig-12
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six popular TL models with the proposed model. According to Fig. 12, the proposed model
achieved higher accuracy compared to the other TL models.

We also reduced the model parameters of VGG16 which help in reducing the model
complexity and minimize the computational resources. The total number of all model
parameters and performance is represented in Table 4. Table 4 reported that the overall
accuracy is less than 61% in all the pre-trained networks, where the models used pre-
trained ‘ImageNet’ weights for hearing impairment identification.

In the proposed TL methods (Improved-VGG16), we reduced the total number of
parameters of VGG16 (134,268,738 to 113,429,666). Although we reduced the number of
parameters, the testing accuracy was still improved to 96.87% from 57.37%. The reason
behind the higher accuracy of the proposed model compared to the other TL models
is the replacement of some VGG16’s layers with the new layers and fine-tune the higher
higher-level parameters, which helps to fit the AEP dataset in the pre-trained network.
This replacement consists of adding some dense layers in the fully connected block of
VGG16 architecture and adding the dropout layers after every dense layer (shown in
Fig. 6). In the fine-tuning block, the time-frequency images are updated with the
‘ImageNet’ weight. This technique helps to fit the dataset in the proposed TL architecture
and enhance the overall performance for the hearing loss diagnosis. This experiment
is carried out in python, where we used Google colab, Windows 10, Intel(R) Xeon(R)
CPU @ 2.30GHz, Tesla K80, and CUDA Version: 10.1.

DISCUSSION
A hearing deficiency detection method based on CWT and improved-VGG16 is proposed
in this paper and achieved significantly outperform performance with the shorter decision
windows (2s) than the previous state-of-art studies. The proposed improved-VGG16
architecture achieved an average accuracy, precision, recall, f1-score, and Cohen kappa of
96.87%, 96.50%, 97.58%, 97.01%, and 93.74%, respectively.

From Fig. 12, it is clear that our network achieved more than 35% significant
improvement compared to the others TL algorithms. In this experiment, we also found a
significant effect of the decision window length on the overall performance. We achieved
the improvement in the 2s decision window: 5.31% accuracy, 5.74% precision, 3.94%
recall, 5.08% in F1 score, and 11.02% Cohen’s kappa than the 1s decision window.

Table 4 Performance comparison with six popular TL models.

Pre-network model Input size Trainable
parameters

Non-trainable
parameters

Total parameters Recognition accuracy (%)

VGG16 224 8,194 134,260,544 134,268,738 57.375

InceptionResNetV2 224 3,074 54,336,736 54,339,810 54.000

ResNet50 224 4,098 23,587,712 23,591,810 54.875

MobileNet 224 2,002 4,253,864 4,255,866 60.250

Xception 224 4,098 20,861,480 20,865,578 57.625

VGG19 224 8,194 139,570,240 139,578,434 56.625

Proposed model 224 103,434,594 9,995,072 113,429,666 96.87 ± 2.78
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The improvement is because the concise decision windows (1s) contain less information
and sometimes provide unsatisfactory performance. However, this study aims to build
an efficient network that can detect the hearing condition with a concise decision window
so that we can able to achieve the decision quickly and can provide more effectiveness in
real-life application.

Furthermore, a comparison of the proposed model with existing related studies is
represented in Table 5. As seen in Table 5, Hallac et al. (2019) and Dass, Holi &
Soundararajan (2016) utilized the convolutional neural network-based classification
approach and achieved higher accuracy compared to the other related studies. Hallac et al.
(2019) reported that with the raw AEP data and CNN, they achieved 94.1% accuracy.
Dass, Holi & Soundararajan (2016) used both the time and frequency domain feature to
extract the information from the raw AEP data. They used a feed-forward multilayer
network to classify the AEP signal and achieved 90.74% testing accuracy. Both studies
achieved a very encouraging performance but need more testing observations to validate
the model’s robustness.

In Dietl & Weiss (2004),Mahmud et al. (2019), Tan et al. (2013) and Li et al. (2019), the
SVM classifier was used to classify the AEP dataset. Their approach achieved 78.80%,
85.71, 87%, and 78.7% accuracy, respectively. The obtained overall performance is not
enough to apply the models in real-life application. Tang & Lee (2019) proposed a TS-PSO
hybrid model to classify the two-class AEP dataset. They used Wavelet entropy as a
feature extraction method and achieved 86.17% testing accuracy. Zhang et al. (2006)
proposed a combination of wavelet analysis and Bayesian networks to classify auditory
brainstem response (ABR) signals. For the wavelet analysis, they used the DWT method.
Although they conducted an excellent analysis, the overall accuracy is reported 78.80%,
which needs improvement.

Table 5 Performance comparison of related AEP studies.

Reference Year Data Feature extraction Classification
method

Classification
accuracy (%)

Subject Class

(Tang & Lee, 2019) 2019 180 2 WE TS-PSO 86.17

(Mahmud et al., 2019) 2019 32 2 Global and
nodal graph

SVM 85.71

(Dietl & Weiss, 2004) 2004 200 3 WPT SVM 74.7

(Zhang et al., 2006) 2006 8 2 DWT Bayesian
network
classification

78.80

(Tan et al., 2013) 2013 39 2 SIFT SVM 87

(Li et al., 2019) 2019 Observation: 671 2 FFT SVM 78.7

(Hallac et al., 2019) 2019 Observation: 671 2 Raw AEP CNN 94.1

(Dass, Holi & Soundararajan, 2016) 2016 Observation: 280
Subjects: 151

2 latency, FFT and DWT A feed-forward
multilayer perceptron

90.74

Proposed work – Observations: 3,200 2 CWT Improved-VGG16 96.87
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The experimental outcomes demonstrated that the proposed architecture gain an
impressive performance than the other related study for hearing deficiency diagnosis
reported in the literature. Although the proposed approach outperforms state-of-art
hearing deficiency detection methods, some difficulties are also faced during the
experimental analysis. For example, to check the cross-validation and prove the feasibility
of our proposed network, a wide range of similar datasets is needed. However, we did not
find such dataset for further validation of the proposed method. Another issue is the
absence of clear speech envelopes in the dataset. In the previous research, several types of
EEG headsets were used to detect the hearing conditions, and these contain a different
number of electrodes (1–256). So, the number of electrodes and which electrodes are
required to achieve acceptable performance should be determined (Mirkovic et al.,
2015; Montoya-Martínez, Bertrand & Francart, 2019; Narayanan & Bertrand, 2018). In
most of the studies, the analysis is carried out with ordinary machine learning algorithms,
and a few studies are investigated with the deep learning approaches (Krizhevsky,
Sutskever & Hinton, 2017; Nossier et al., 2019; Shao et al., 2019). However, most of the
studies' testing accuracy is not enough to use the model in real-time as well as real-life
applications. A fast and more accurate approach can be an efficient tool for future hearing
devices and provide a great application in real-life uses. Our study proposed the time-
frequency distribution with a deep learning method and achieved superior performance to
other related approaches for hearing loss diagnosis reported in the literature. The key
advantages of our proposed method compared to previous studies are written below:

! Instead of training the AEP dataset with the deep learning architecture from scratch, the
proposed study is conducted with a transfer learning strategy, which helps in faster
training and better accuracy.

! To fit our time-frequency AEP dataset with the pre-trained model weight, we fine-tuned
some higher-level parameters where the pre-trained weights are updated with the
provided dataset. This strategy helps in enhancing the overall performance for detecting
hearing deficiency.

! We compare the model’s performance with the six popular TL methods, including
VGG16 (Simonyan & Zisserman, 2015), VGG19 (Simonyan & Zisserman, 2015),
MobileNet (Pan et al., 2020), ResNet50 (He et al., 2016), InceptionResNetV2 (Längkvist,
Karlsson & Loutfi, 2014), and Xception (Chollet, 2017) algorithms where the proposed
architecture is superior for hearing deficiency diagnosis.

! We also changed some higher-level parameters (after the first layer of the convolutional
block five, we remove all the layers and add the new fully connected layer shown in
Fig. 5). This approach also helps in reducing the VGG16 parameters and increasing the
performance of the proposed improved-VGG16 model.

! The proposed approach achieved the height classification accuracy of 96.87%, compared
to the previous studies (Ciccarelli et al., 2019; McKearney & MacKinnon, 2019;
Ibrahim, Ting &Moghavvemi, 2019;Dietl &Weiss, 2004; Tang & Lee, 2019; Sanjay et al.,
2020; Xue et al., 2018; Zhang et al., 2006; Tang & Lee, 2019; Mahmud et al., 2019;
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Dietl &Weiss, 2004; Zhang et al., 2006; Tan et al., 2013; Li et al., 2019;Hallac et al., 2019;
Dass, Holi & Soundararajan, 2016).

! The impact of different decision windows is also exhibited in the proposed study,
whereas our network provides a significant outcome with a concise decision window.

CONCLUSIONS
The proposed hearing loss diagnosis framework consists of two major steps: signal to
image transformation and building a hearing deficiency diagnosis system using deep CNN.
In the proposed study, the CWT is used to convert the raw signals to time-frequency
images. Then, CNN-based improved-VGG16 is used to classify the time-frequency
images. This approach achieved better outcomes with fewer trainable parameters, which
help to reduce the training time of the model. The applicability and effectiveness of the
proposed method are verified by the publicly available AEP dataset, and it achieved
96.87% testing accuracy with a concise decision window. Moreover, this study will help to
identify early hearing disorders efficiently. Because of the unstable and subject-specific
characteristics of the AEP signal, identification of the AEP signal is challenging. Thus, to
enhance the detection system’s accuracy, other AEPs features need to be investigated, and
the use of more data variance and conditions can also be improved the outcome.
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ABSTRACT
Dynamic locomotion plays a crucial role for legged robots to fulfill tasks in
unstructured environments. This paper proposes whole-body kinematic and
dynamic modeling method s based on screw theory for a quadruped robot using
different gaits and mechanism topologies. Unlike simplified models such as centroid
or inverse pendulum models, the methods proposed here can handle 10-dimensional
mass and inertia for each part. The only simplification is that foot contact
models are treated as spherical joints. Models of three different mechanism
topologies are formulated: (1) Standing phase: a system consisting of one
end-effector, the body, and four limbs, the legs; (2) Walking phase: a system
consisting of one or two lifting legs (depending on the chosen gait), two or three
supporting legs; (3) Floating phase: a system in which all legs detach from the
ground. Control strategies based on our models are also introduced, which includes
walk and trot gait plans. In our control system, two additional types of information
are provided: (1) contacting forces are given by force sensors installed under feet;
(2) body poses are determined by an inertial measurement unit (IMU). Combined
with the sensor data and calibrated mass, inertia, and friction, the joint torque can be
estimated accurately in simulation and experiment. Our prototype, the “XiLing”
robot, is built to verify the methods proposed in this paper, and the results show that
the models can be solved quickly and leads to steady locomotions.

Subjects Artificial Intelligence, Embedded Computing, Real-Time and Embedded Systems,
Robotics, Theory and Formal Methods
Keywords Whole body dynamic, Screw theory, Quadruped robot, Mechanism topologies

INTRODUCTION
Compared with wheeled and tracked mobile machines, legged robots have apparent
advantages when working in unstructured environments. In the past few decades,
remarkable improvements have been witnessed in the agility and mobility of legged robots.
For instance, the biped Atlas (Kuindersma et al., 2016) and quadruped BigDog (Raibert
et al., 2008), both actuated by hydraulic systems, and the quadruped spot mini driven by
electric motors have demonstrated their capabilities in highly complex motions. In
addition, the quadruped HyQ designed by Semini et al. (2011), which was further
improved by Hutter et al. (2016) manifested itself in terms of excellent dynamic

How to cite this article YanW, Pan Y, Che J, Yu J, Han Z. 2021. Whole-body kinematic and dynamic modeling for quadruped robot under
different gaits and mechanism topologies. PeerJ Comput. Sci. 7:e821 DOI 10.7717/peerj-cs.821

Submitted 13 May 2021
Accepted 29 November 2021
Published 16 December 2021

Corresponding author
Yang Pan, pany@sustech.edu.cn

Academic editor
Pengcheng Liu

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.821

Copyright
2021 Yan et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.821
mailto:pany@%C2%84sustech.%C2%84edu.%C2%84cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.821
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


locomotion. Among these state-of-the-art designs, whole-body modeling serves as a
cornerstone for sophisticated control and estimation.

Legged robots are typically treated as floating-based multi-body systems (MBS). Due to
the complexity of the whole-body models, a common pipeline is to adopt reduced-order
models to concentrate on some significant degrees of freedom. In Raibert, Brown &
Chepponis (1984), the concept of virtual legs was introduced to stimulate a 3D one-legged
hopping. By controlling the jumping height, forwarding speed, and body pose of the
machine, a successfully balanced hopping was achieved in the 3D environment. The idea
was further extended to a four-legged robot shown in Raibert, Chepponis & Brown (1986).
The linear inverse pendulum (LIP) model, on the other hand, is one of the most
widely used template models for both biped and quadruped robots (Kajita et al., 2003).
The LIP model mainly relies on the zero-moment point (ZMP) concept, which roughly
acts as the center of pressure concerning all ground reaction forces. Besides, the spring-
loaded inverted pendulum (SLIP) model was adopted to mimic the spring-like behavior of
a robotic leg in the running motion (Hutter et al., 2010). In addition to the LIP and
SLIP models, the centroidal momentum model further studies the effect of angular
momentum on the body, and it was used to generate a force/position hybrid strategy that
allowing the HyQ robot to stand and walk on slopes above 50° (Focchi et al., 2017).

The template model alone, in general, cannot enable dynamic-legged locomotion, and a
precise whole-body dynamics model is required. Based on whole-body dynamics models,
advanced control scheme such as model predictive control (MPC) has been applied to
real-world legged robots. In Bellicoso et al. (2017), the authors designed the quadruped
ANYmal, which is actuated by series-elastic actuators. By using a hierarchical whole-body
controller relied on ZMP to optimize the whole-body motion and contact forces to execute
dynamic gaits, including trot, pace, and dynamic lateral walk, as well as a smooth
transition between them. The quadruped cheetah developed by MIT also used a full-
dynamic parameterized model (Bledt et al., 2018). By assembling an actuator for high
force proprioceptive control, the quadruped can climb stairs without any sensor. To
improve the stability performance of a humanoid robot, the authors in Xie, Zhao &
Mei (2015) applied a whole-body control scheme based on the relative position of feet and
the trajectory of its CoM with a ZMP regulation. In Xin et al. (2019), a whole-body
dynamic model is developed, which consists of a dynamic torso model, a dynamic wheel-
leg model, and contact force constraints between the wheels and the ground. Based on the
whole-body dynamic model, they proposed a control frame to generate whole-body
motions on a wheel-leg robot for dynamic locomotion and balance.

The main obstacle of applying the whole-body dynamic model, considering all parts’
inertias, is the complication of the dynamic model. A quadruped robot typically needs fast
response performance with high frequency during locomotion. In practice, a tractable
whole-body dynamic model is critical since it only costs a few moments for a legged robot
to take a step, and a feasible solution may not be available in the model is too complicated.
Screw theory is an advanced robot modeling method, which is generally used for
kinematics and dynamics modeling of robots (Cibicik & Egeland, 2019; De Jong, Van
Dijk & Herder, 2019; Frisoli et al., 2011; Gallardo-Alvarado, Rodrguez-Castro &
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Delossantos-Lara, 2018; Du, Fnadi & Benamar, 2020), especially for those involving
parallel mechanisms. One advantage of the screw theory is that it can simplify the robot
coordinate system and make the solution faster. In light of the screw theory, the authors in
Chen et al. (2015) proposed the fault-tolerant gait to deal with the kinematics problem
containing mechanical faults.

In this paper, a whole-body dynamic modeling method for quadruped robots is
proposed, which can make a quadruped robot realize real-time motions of a loop in 1 ms
and generate more stable movements.

This paper mainly contributed as follows:

1. A novel modeling method for quadruped robots is proposed, and based on screw theory,
both kinematic and dynamic models can be formulated elegantly.

2. A model-based control strategy is proposed, which can improve the dynamic response
performance of the robot.

3. We integrate the proposed model and plan on the “XiLing” robot, which has high
dynamic response performance in a complex environment. Various simulations and
experiments are carried out to validate the method’s effectiveness.

SYSTEM OVERVIEW
This paper introduces a new modeling method for quadruped robots based on screw
theory to improve the dynamic performance in a complex ground environment. Our
design, “XiLing” is shown in Fig. 1. To increase the carrying capacity of the robot, we use
carbon fiber and aluminum alloy to reduce the overall weight without losing strength.

As shown in Fig. 1, each leg has three degrees of freedom. The abduction/adduction
joint contributes to the leg motion in the frontal plane. The hip and knee joint commonly
relate to the leg motion in the sagittal plane. The shank uses a pulley to drive, which the
reduction ratio is 1:2. The robot can move in all directions with a walk or trot gait.
The whole-body dynamics model is built to analyze the dynamics characteristics during

Figure 1 Main components of “XiLing”. The “XiLing” robot is an electrically powered agility
robotcapable of locomotion in complex environments. Full-size DOI: 10.7717/peerj-cs.821/fig-1
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walking. In addition, we design and assemble the motor drive module and add the brake
system to ensure the safety of the robot itself and the operator.

Moreover, force sensors are placed on the toes of each leg, which can sense the
ground reaction in real-time. Thus, we can analyze the changes in external terrain and the
position and posture of the robot body in combination with the IMU. Based on the
perception of the external environment and itself, the current state can be comprehensively
estimated. The corresponding dynamic model will be selected according to the topological
structure at this time. To calculate the torque of the joint at this time. Then the MPC
controller will re-plan the walking gait and trajectory so that the robot can walk smoothly.
The control framework is shown in Fig. 2.

As we know, the legged robot has to face the extraordinarily complex and changeable
external environment in walking, and it needs to respond to the changes of the external
environment. Otherwise, the feet may have landed, and the algorithm has not been
solved yet; thus, the algorithm has lost its due function, which is also one reason why no
one has established the whole-body dynamics model of the quadruped robot at present.
We use the screw theory to develop the dynamic quadruped model. It will significantly
simplify the establishment of the coordinate system and improve the model calculation
speed and efficiency. The following several sections will detail the modeling process of
kinematic and inverse dynamic.

KINEMATICS
Solving kinematics is the foundation of dynamic calculation. Before solving the dynamics,
we need to finish the kinematics to obtain the position and velocity of each link. This
section will introduce the definition of the coordinate system, inverse kinematic, and
forward kinematic. It will provide the theoretical basis for subsequent modeling and
planning.

Figure 2 Quadruped robot control framework. The user sends gait type and speed commands to the
Industrial Personal Computer by a webpage. The gait generator creates the trajectory of the body and
foot. Then use the IK model to compute the joint parameters. The change of the environment and robot
statesis used to make real-time adjustments to the movement trajectory.

Full-size DOI: 10.7717/peerj-cs.821/fig-2
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Definition of coordinate system
The link’s rotation axis, velocity, and inertia are expressed differently in different
coordinates. So, it is essential to define a unified coordinate system. Figure 3 shows the
definition of the home position and the coordinate of body center, leg, and ground. The leg
frame is defined at the intersection of the joint HAA (hip abduction/adduction) and
HFE (Hip flexion/extension) axes in the same direction as the body frame.

Inverse kinematic
The inverse kinematics is given based on the leg frame’s representation~x in the leg frame
to calculate the joint rotation angle~q. Figure 3 shows the coordinates and steering
definitions for each joint of the leg. Before solving the problem, we simplify the calculation
by limiting the actual walking condition of the robot. Assume that the robot’s toes will not
reach the top of the body, that is:

q2
!! !! < p

2
, Ly < 0 (1)

First, q1 is calculated by projecting onto the YOZ plane. In the YOZ plane, the projection
of point C is D. We can obtain Eq. (2) by considering the geometrical relationship:

Figure 3 Home position and coordinate definition of robot. The frame of body, leg and foot are
defined and the position and posture are illustrated. Full-size DOI: 10.7717/peerj-cs.821/fig-3
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a ¼ arc cos
zj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p ; b ¼ arc cos

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p (2)

Here α is the angle between DO
#!

and Z, and β is the angle between AO
#!

and DO
#!

.
Figure 4 shows the geometric relationship of the ends under different positions. We can

use this to calculate q1 according to Eq. (3).

q1 ¼
a# b y, 0; z. 0
p# a# b y, 0; z, 0

$
(3)

During the robot locomotion, the upper and lower links are always in the same plane.
This plane is used as a new study plane to calculate q2 and q3. The new origin of the
coordinate system was transferred to joint HFE, as shown in Fig. 5.

Figure 4 Geometric relations of a single leg in the YOZ plane. The leg end-effector position has
twodifferent cases when robot walking. Both of them have different solvers.

Full-size DOI: 10.7717/peerj-cs.821/fig-4

Figure 5 The illustrated conversion between the old and new frame of the leg.
Full-size DOI: 10.7717/peerj-cs.821/fig-5
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The conversion formula of the old and new coordinate systems is Eq. (4):

x0 ¼ x
y0 ¼ #AD ¼ #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2 # l21

q
(4)

Then the problem was transformed into solving the inverse kinematics of the planar
two-link mechanism. According to the trigonometric relationship, we know that:

f ¼ arc cos
x0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y02
p ; u ¼ arc cos

l22 þ x02 þ y02 # l23
2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p (5)

Here ϕ is the angle between AC
#!

and the x-axis and φ is the angle between AC
#!

and AB
#!

.
As shown in Fig. 6, when the end effectors are in a specific position, there will be different
solutions due to different ways to bend the legs.

if q3 . 0

q2 ¼
p
2
# u# f x0 . 0; y0, 0

# p
2
# uþ f x0 , 0; y0, 0

8
<

: q3 ¼ arc cos
l22 þ l23 # x02 # y02

2l2l3

if q3 , 0

q2 ¼
p
2
þ u# f x0 > 0; y0 < 0

# p
2
þ uþ f x0 < 0; y0 < 0

8
<

: q3 ¼ #arc cos
l22 þ l23 # x02 # y02

2l2l3

(6)

Forward kinematic
Forward kinematics is to calculate the expression of all links relative to the ground frame
given the initial position and joint rotation angle. Because the robot is a floating base
system, we cannot directly find the expression of the relevant parameters of the robot in
the ground frame. So we first take the center of the robot body as the reference frame
to solve the presentation of all links. And then, we transfer them to the ground coordinate
according to the conversion formula of the body and the ground coordinate system.

Figure 6 The relationship between the position of the link and angle of the joint in the new leg frame.
The foot position has two cases and each case has two solutions. It is chosen according to the walking
states. Full-size DOI: 10.7717/peerj-cs.821/fig-6
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Screw theory is used to build a kinematics model. See Appendix A for the meaning of all
symbols used in this paper.

In the screw theory, the velocity screw V and screw axis S of the rigid body is defined by
a pair of vectors that is:

S ¼ T;Rð Þ V ¼ v;wð Þ (7)

The screw axis S defines the position and positive rotation direction of the revolute
joint. The first vector is the position on the ground coordinate frame, and the second
vector is the direction of rotation. V represents the velocity and angular velocity of the rigid
body.

In this paper, all the joint and link parameters are transferred to the body frame B for
analysis. So, we assume that the body coordinate frame is relatively stationary when we
solve the forward kinematic. The forward position model solves the end-effector position
on the frame B from the inputs angle of every joint. Before computing the angle, the
initial position of the robot should be determined to determine the initial velocity screw as
follows:

BS11 ¼ Bl=2; 0;#Bw=2;#1; 0; 0ð Þ
BS12 ¼ Bl=2; 0;#Bw=2# l1; 0; 0;#1ð Þ
BS13 ¼ Bl=2;#l2;#Bw=2# l1; 0; 0;#1ð Þ
BS21 ¼ #Bl=2; 0;#Bw=2;#1; 0; 0ð Þ;
BS22 ¼ #Bl=2; 0;#Bw=2# l1; 0; 0;#1ð Þ;
BS23 ¼ #Bl=2;#l2;#Bw=2# l1; 0; 0;#1ð Þ
BS31 ¼ #Bl=2; 0;Bw=2; 1; 0; 0ð Þ;
BS32 ¼ #Bl=2; 0;Bw=2þ l1; 0; 0; 1ð Þ;
BS33 ¼ #Bl=2;#l2;Bw=2þ l1; 0; 0; 1ð Þ
BS41 ¼ Bl=2; 0;Bw=2; 1; 0; 0ð Þ;
BS42 ¼ Bl=2; 0;Bw=2þ l1; 0; 0; 1ð Þ;
BS43 ¼ Bl=2;#l2;Bw=2þ l1; 0; 0; 1ð Þ

(8)

We can obtain the initial velocity screw of the joint computed according to the screw
axis Sij using Eq. (9). Where ŝ is the unit velocity screw. Such as the joint HAA of leg1 is
ŝ ¼ 0; 0; 0; 1; 0; 0ð Þ.

J ijvso ¼ Tv Sij
% &

& ŝ (9)

Then we can get the end-effector position as Eq. (10) and the Jacobian matrix in
Eq. (11).

eei ¼ P Ji1vso & hi1
% &

P Ji2vso & hi2
% &

P Ji3vso & hi3
% &

eeio (10)

Ji ¼ Tv P0ð ÞJ1ivso Tv P1ið ÞJ2ivso Tv P2ið ÞJ3ivso
' (

(11)

where i = 1, 2, 3, 4 is the leg number of the robot; P is the homogeneous transformation
matrix when the joint rotation θ. Sij is the initial velocity screw of the joint computed
according to the screw axis in home position.
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INVERSE DYNAMICS
Dynamics is to solve the joint torque when the current motion state and external force are
known. The position and velocity of all the links and joints are required before the
dynamics. The previous section addresses these issues. Additionally, the inertia and the
constraint matrix are also known because these two parameters are only related to the
robot’s position.

In this paper, all the joints are revolute joints. Each joint has five dimensions of
constraint and one dimension of motion. Therefore, we can define the constraint matrix
and moment matrix according to the Plucker basis coordinate system. At the home
position, it is expressed as Eq. (12).

GJijcmo ¼ Tf Sij
% &

& ŝ6'5;
GMij

cmo ¼ Tf Sij
% &

& ŝ6'1 (12)

At any given time, the constraint matrix depends only on the position of the joint.
According to the forward kinematics, the homogeneous transformation matrix can be
obtained according to Eq. (10). And then the constraint matrix at any time can be obtained
by Eq. (13):

GJijcm ¼ Tf Pð ÞGMij
cmo;

GMij
cm ¼ Tf Pð ÞGMij

cmo (13)

For the inertia of the linkage, we can first get the inertia of the linkage at the center of
mass. Then, according to the position relationship between the center of mass and the
ground, Eq. (14) is used to solve it.

GIij ¼ GTf Pij
% &

IijoGTT
f Pij
% &

(14)

where Tf and P are isomorphic and only depends on the position of the links. Iijo is the
initial inertia details in Appendix B. Moreover, we can combine GIij to a big matrix:
I ¼ diag GIij

% &
.

The solution of velocity is related to the model of dynamics. During the walking phase,
quadruped robots mainly have three situations: four-leg landing on the ground, two or
three landing on the ground, and four suspended in the air. Respectively corresponding to
the stand, walk and bound. In this paper, different states of robots are divided into different
topological for analysis. Furthermore, the dynamics model is different under different
topological mechanisms. In the state of stand and walk, the robot is a fixed base system,
and the velocity of all the links can be obtained by establishing a constraint matrix. Then it
can be substituted into the dynamic model to calculate the joint torque; in the bound
gaits, the robot is a floating base system, which the constraint matrix is singular. Here, we
first get the acceleration according to the last time velocity, then use the integral method to
get the next velocity. As shown in Fig. 7, the topology is constructed for these three
cases. Figure 7A shows that the robot jumps and is free from the ground reaction.
Figures 7B and 7C show the external forces on the robot when it walks in the trot or
walking gaits. Figure 7D shows the force analysis of the robot when it stands, and all four

Yan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.821 9/21

http://dx.doi.org/10.7717/peerj-cs.821/supp-7
http://dx.doi.org/10.7717/peerj-cs.821
https://peerj.com/computer-science/


legs are in the support phase. Next, we will introduce how to build the constraint matrix
and solve the dynamic model.

Stand
Show in Fig. 7D, When the robot stand, there is only one end-effector, the body. It can
realize the action of squatting and standing up and the three-axis attitude transformation
of roll, pitch, and yaw. In this case, each robot’s leg is connected to the ground as a passive
spherical joint, and the three-dimensional translation is constrained. The body is the
only end effector, and the robot can be regarded as a parallel mechanism. The force of each
joint on its parent connecting link is defined as negative, and the force on the child
connecting link is defined as positive so that the constraint matrix can be established.

Once we have the constraint matrix for each joint, write the constraint matrix for all
joints and links as a larger matrix C.

C ¼

ground
body
L11
L12
L13
L21
L22
L23
L31
L32
L33
L41
L42
L43

fix s1 s2 s3 s4 r11 r12 r13 r21 r22 r23 r31 r32 r33 r41 r42 r43 m11 m12 m13 m21 m22 m23 m31 m32 m33 m41 m42 m43

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0
0 0 0 0 0 1 #1 0 #1 0 0 0 0 0 0 0 0 1 #1 0 #1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0
0 #1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0
0 0 #1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0
0 0 0 #1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1
0 0 0 0 #1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

2

6666666666666666666666664

3

7777777777777777777777775

(15)

Figure 7 Topological structure of dynamic model under different states. The blue arrow indicatesthe
ground reaction which is the foot in contact with the ground. The red arrows surround supporting
polygons. (A) Floating phase: running in bound gait. (B and C) Walking phase: running in walk or
trotgait. (D) Standing phase: running in the stand which can pitch, roll, yaw.

Full-size DOI: 10.7717/peerj-cs.821/fig-7
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According to the formula of constraint matrix, Cij represents the force of joint j on link i.
For constraint: Cij ¼ GJijcmo; For motion: Cij ¼ GMij

cmo.
Each of these rows is a linkage, there are 14 of them, and each of these columns is a joint.

For the same joint, constraints and motions are considered separately. We knew that C is a
sparse matrix, and we can use unique algorithms to calculate it to improve the
computational efficiency of dynamics. We know that by conservation of energy in Eq. (16).

CT & v ¼ Cv ¼
0
_h

) *
(16)

where, C v represents the power of joint rotation, and v represents the speed of all the links.
Take the derivative of both sides:

CT & _v ¼ 0
€h

) *
# _CT & v (17)

Define: Ca ¼
0
€h

) *
# _CT & v , then CTa = Ca

For any linkage, the force equilibrium condition satisfies Eq. (18):

fp ¼ #Iaþ fc ¼ #fe # Ig þ v'(Iv (18)

By combining the equilibrium equations of all the links and Eq. (17), we can take the
dynamic Eq. (19) of the whole-body dynamic:

#I C
CT

+ ,
a
g

+ ,
¼ fp

ca

+ ,
(19)

Here a is the acceleration of all links and η is the forces of all joints, including constraint
and driving force.

Walk
Quadruped robots can walk in various gaits, such as walk, trot, pace, gallop. The main
differences between gaits are the order and the time of the stride and the duty cycle of
the swing phase. Regardless of the gait, there always exists a supporting phase and a
swinging phase at any given moment. The dynamic model was constructed with the
contact point between the support and ground as a spherical joint and the swinging leg and
body as the end-effectors. This section introduces how to build a constraint matrix by
taking Walk-gait as an example. The methods are the same for other gaits. We need to
analyze which leg is in the swing and which portion supports and modifies the constraints.

When the robot walks in Walk-gait, at any time, there are three legs in contact with
the ground and one leg in the air. There are four different topologies. Figure 7B shows the
third leg in the air. This section analyzes only this case, and other issues are similar. Among
them, the 1st, 2nd, and 4th legs contribute to the support contact with the ground and
support body movement. The contact points between the toe and the ground can be
regarded as spherical joints, which constraining three-dimensional translation, but
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three-dimensional rotation is not restricted. Therefore, the constraint of a spherical joint
can be obtained as follows:

si ¼

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

2

6666664

3

7777775

Furthermore, the constraint matrices of all the joints can be combined into a larger
matrix C to represent the robot’s force. The establishment and solution of the dynamic
model are consistent with the above Stand topology, which will not be described in detail.

C ¼

ground
body
L11
L12
L13
L21
L22
L23
L31
L32
L33
L41
L42
L43

fix s1 s3 r11 r12 r13 r21 r22 r23 r31 r32 r33 r41 r42 r43 m11 m12 m13 m21 m22 m23 m31 m32 m33 m41 m42 m43

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0
0 0 0 1 #1 0 #1 0 0 0 0 0 0 0 0 1 #1 0 #1 0 0 0 0 0 0 0 0
0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0
0 #1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0
0 0 #1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

2

6666666666666666666666664

3

7777777777777777777777775

(20)

Bound
The Bound-gait differs from the above two. It is a floating base system, including five end
effectors. The robot belongs to an unconstrained mechanism at this moment. Note that,
the constraint matrix corresponding to the force of the robot is a singular matrix.
That makes it impossible to calculate the velocities of all the links by calculating the
constraint matrix.

C ¼

body
L11
L12
L13
L21
L22
L23
L31
L32
L33
L41
L42
L43

r11 r12 r13 r21 r22 r23 r31 r32 r33 r41 r42 r43 m11 m12 m13 m21 m22 m23 m31 m32 m33 m41 m42 m43

#1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0 #1 0 0
1 #1 0 #1 0 0 0 0 0 0 0 0 1 #1 0 #1 0 0 0 0 0 0 0 0
0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0
0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0
0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1 0
0 0 0 0 0 0 0 0 0 0 1 #1 0 0 0 0 0 0 0 0 0 0 1 #1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

2

66666666666666666666664

3

77777777777777777777775

(21)

Here we are going to use integrals to calculate. Then, when the robot starts to move, its
position is known, and its velocity is zero. Then, we can establish constraint matrix Eq. (21)
to solve the spatial accelerate.
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And then, in the next loop, we can obtain the spatial velocity by numerical integration.
Although the acceleration of the link changes from time to time, we use high-frequency
real-time control, which can be calculated at the frequency of 1,000 Hz. The speed can
be refreshed quickly according to the change of the link acceleration. The control effect has
been achieved continuously and steadily.

VERIFICATION OF KINEMATIC AND DYNAMIC MODELS
The above section introduces the whole body kinematic and dynamic models of a
quadruped robot. In our control framework, the kinematics model will be used to
transform the trajectory of end-effectors from Cartesian space to axial space. Dynamic
models will be used for control and planning, making the robot regenerate the control
parameters of the next real-time cycle according to the feedback information. This section
will introduce how to generate the trajectory in walk and trot gait, and verify the models in
simulation and experiment.

Motion plan
According to bionics research from Polet & Bertram (2019), for tetrapod, there are
different gaits at different speeds. The walking gait is used when motion at a slow pace,
using the trot gait when moving faster. Furthermore, use the bound gait when chasing prey
or running away. The main difference between different gaits is the order of the stride and
the time cycle of the support and swing legs. This paper has mainly introduced the
planning of the walk and trot gaits at a slow speed to verify the correctness and feasibility of
the model. Figure 8 shows the stride order, stride length, and time to duty ratio in
these two gaits. An elliptical trajectory transition is used between two steps, where step
length, step height, and step time are adjustable. During the acceleration and deceleration,
the displacement of the body is as half as the length of other times. So, we set the step
length at the beginning and the end to be half a step, but the duration is the same.

To make the robot walk smoothly and stably, the trajectory needs to satisfy certain
constraints, such as the position and velocity should be continuously differentiable. For
this purpose, the planning uses the trapezoidal curve, making each step of walking
experience a process of acceleration, uniform speed, and deceleration. Equation (22) is the

Figure 8 Walk and Trot gaits. The sequence, step length, and time of the robot under walk and trot
gaitare described. It will travel half a step-less at the trot gait at the same time. (A) Trot gait. (B) Walk gait.

Full-size DOI: 10.7717/peerj-cs.821/fig-8

Yan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.821 13/21

http://dx.doi.org/10.7717/peerj-cs.821/fig-8
http://dx.doi.org/10.7717/peerj-cs.821
https://peerj.com/computer-science/


functional expression of the trapezoidal curve, and all following trajectories are planned on
this basis. In addition, different curves can be generated by setting different velocity and
acceleration.

s tð Þ ¼

1
2
at2 0 ) t ) ta

vt # v2

2a
ta, t ) T # ta

2avT # 2v2 # a2 t # Tð Þ2

2a
T # ta, t ) T

8
>>>>>><

>>>>>>:

(22)

A legged robot is a floating base system that needs to plan its four toes and body
simultaneously. First, as shown in Eq. (23), is the trajectory planning of feet. Between every
two footholds, the robot use elliptical trajectory transitions. Second, the body’s trajectory is
determined by the number of steps and the position of the foothold shown in Eq. (24).
Here L is the step length of forwarding direction; W is the step length of right and left
directions.

xleg ¼ xpre þ Lþ Lcos p# s tð Þð Þ 0 ) t ) T
yleg ¼ H sin p# s tð Þð Þ 0 ) t ) T
zleg ¼ zpre þW þWcos p# s tð Þð Þ 0 ) t ) T

8
>><

>>:
(23)
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(24)

Figure 9 shows the trajectory of leg and body in Cartesian space when robot walking
with trot and walk gait. These trajectories are expressed in-ground coordinate systems.
We can use Eq. (25) to transfer it from G frame to Leg frame. Then the joint rotation angle
was calculated by the inverse kinematics. Sent the angle to the corresponding motor can
make the robot walking with a planned gait.
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L~x ¼ LPB
BPG tð ÞG~x (25)

Kinematic simulation
This paper use ADAMS to verify the kinematic and dynamic models. The physics engine
of ADAMS has high computational precision. It can accurately reflect the ground reaction
force of the robot and joint output torque. It can provide a theoretical basis for the
mechanism design and hardware selection. The body and links are made of aluminum
alloy in the simulation, close to the prototype used. The only difference is that the
prototype has actuators, IMU, force sensors, batteries but look at them as a whole with
the body in the simulation. We simplified the model and equivalently added all of these
masses to body mass, ignoring the influence of its inertia. Figure 10 shows the schematic
diagram of a quadruped robot walking in the trot and walk gait.

Figure 9 Trajectory of (A) Trot and (B) Walk gaits. L is the step length.
Full-size DOI: 10.7717/peerj-cs.821/fig-9
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Dynamic simulation
When the robot is in motion with a walking gait, three legs are always in the support
phase and another leg in the swing phase. At this time, the body is stationary relative to the
ground. Figure 11 shows the torque curve of the knee joint of the swing leg during the
switching between the swing phase and the support phase. It can be seen that the
calculation results of the dynamic model are the same as the simulation results. It is shown
that the dynamic model has high computational accuracy and veracity under this topology
structure. In addition, the torque of the swing leg’s joint will suddenly change at the
moment of switching. That is due to the disappearance and appearance of external forces,
leading to a sudden change in joint acceleration.

Experiment in prototype
Our experiments were conducted on “XiLing”, a high dynamic response quadrupedal
robot used an embedded PC with an Intel Core i7 4500U, running Ubuntu 16.04
(Linux-4.9.90 kernel) with Xenomai3 patch. The level communicates at 1 kHz over

Figure 10 Trot and Walk simulation in ADAMS. Walking the same distance will save half the time
attrot gait. (A) Simulation in trot gait. (B) Simulation in walk gait.

Full-size DOI: 10.7717/peerj-cs.821/fig-10

Figure 11 Knee joint torque of swing leg in walk gait under simulation. The model calculated results
are extremely close to the simulation. Full-size DOI: 10.7717/peerj-cs.821/fig-11
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EtherCAT and control signals are generated in a 1 ms control loop that runs on a
dedicated onboard industrial PC. The robot is driven by 12 identical motors, which are
actuated by Elmo driver and are powered by a 48 V lithium battery. Table 1 shows motor
performance parameters, with a continuous torque of 40 N·M and maximum torque of
108 N·M. In the prototype, the shank is driven by a gear belt with a reduction ratio of 1:2.
The torque bearing capacity of the knee joint can reach 216 N·M, which completely
satisfied the maximum torque requirements of the simulation. In other periods, the joint
force is below 40 NM, which is lower than the continuous output torque of the motor.

The robot can quickly switch any posture in its workspace while standing. Figure 12
shows the basic movements such as roll, pitch, yaw. Respectively rotation angles of them
are ±5°, ±10°, ±20°. The trapezoidal curve is used to complete the planning during the
movement, and the time of the switching process can be adjusted by modifying the
acceleration and the maximum speed. Figure 13 illustrates a snapshot of the yaw angle
changing from −15° to 15° within 0.9 s. Figure 14 shows the tracking curve of knee position
and velocity during this movement. With 1,000 points interpolated per second, both

Table 1 Motor parameters.

Parameters Value Units

Mass 0.96 kg

Gear ratio 20 –

Continuous torque 40 N·M

Max torque 108 N·M

Max joint speed 350 RPM

Figure 12 Various postures of the prototype in standing.
Full-size DOI: 10.7717/peerj-cs.821/fig-12

Figure 13 Yaw series with yaw angle take 0.9 s from 15° to −15°.
Full-size DOI: 10.7717/peerj-cs.821/fig-13
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allow for fast and accurate tracking. It is worth noting that the measured velocity curve has
burrs because of the gear backlash and the friction between the belt and pulley. Burrs can
be eliminated by choosing more precise gears and optimizing the planning control
algorithm. We will prioritize this problem in the next step.

CONCLUSION AND FUTURE WORK
This paper presented whole-body kinematic and dynamic modeling methods for
quadruped robots based on screw theory. Compared with traditional LIP or centroidal
models, 10-dimensional mass and inertia of all parts are considered, which means higher
precision. We divided the model into three phases: stand, walk, bound. Controller and
plan strategies based on these models are proposed under each state. The motor torque
curves of different gaits are calculated and compared to simulating software, which shows
that computing and simulating results are identified. Prototype experiments of the
standing phase are provided, and it turned out that the measured curves are very close to
theoretical ones. In the future, we will focus on dynamic parameter identification.
Contact models should also be improved via considering friction to get better results under
slipping conditions.

Figure 14 Track tracking effect of the knee joint while yawing. The desired position (A) and velocity
(B) are presented with the measured position and velocity at the knee angle. The results show that the
actual system follows the given commands well. Full-size DOI: 10.7717/peerj-cs.821/fig-14
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Human-robot interaction: the impact of
robotic aesthetics on anticipated human
trust
Joel Pinney, Fiona Carroll and Paul Newbury
Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales

ABSTRACT
Background. Human senses have evolved to recognise sensory cues. Beyond our
perception, they play an integral role in our emotional processing, learning, and
interpretation. They are what help us to sculpt our everyday experiences and can be
triggered by aesthetics to form the foundations of our interactions with each other
and our surroundings. In terms of Human-Robot Interaction (HRI), robots have the
possibility to interact with both people and environments given their senses. They can
offer the attributes of human characteristics, which in turn can make the interchange
with technology a more appealing and admissible experience. However, for many
reasons, people still do not seem to trust and accept robots. Trust is expressed as a
person’s ability to accept the potential risks associated with participating alongside an
entity such as a robot. Whilst trust is an important factor in building relationships with
robots, the presence of uncertainties can add an additional dimension to the decision
to trust a robot. In order to begin to understand how to build trust with robots and
reverse the negative ideology, this paper examines the influences of aesthetic design
techniques on the human ability to trust robots.
Method. This paper explores the potential that robots have unique opportunities to
improve their facilities for empathy, emotion, and social awareness beyond their more
cognitive functionalities. Through conducting an online questionnaire distributed
globally, we explored participants ability and acceptance in trusting the Canbot U03
robot. Participants were presented with a range of visual questions which manipulated
the robot’s facial screen and askedwhether or not they would trust the robot. A selection
of questions aimed at putting participants in situations where they were required
to establish whether or not to trust a robot’s responses based solely on the visual
appearance. We accomplished this by manipulating different design elements of the
robots facial and chest screens, which influenced the human-robot interaction.
Results. We found that certain facial aesthetics seem to be more trustworthy than
others, such as a cartoon face versus a human face, and that certain visual variables
(i.e., blur) afforded uncertainty more than others. Consequentially, this paper reports
that participant’s uncertainties of the visualisations greatly influenced their willingness
to accept and trust the robot. The results of introducing certain anthropomorphic
characteristics emphasised the participants embrace of the uncanny valley theory, where
pushing the degree of human likeness introduced a thin line between participants
accepting robots and not. By understanding what manipulation of design elements
created the aesthetic effect that triggered the affective processes, this paper further
enriches our knowledge of how we might design for certain emotions, feelings, and
ultimately more socially acceptable and trusting robotic experiences.
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INTRODUCTION
In a world where robotics is becoming more prominent, our ability to trust them has
never been so important. With a robot’s physical appearance drastically influencing our
perceptions of trust, a greater awareness of how design elements and their aesthetic effect
may trigger what affective processes are imperative. Robots have an exceptional potential to
benefit humans within a team, yet a lack of trust in the robot could result in underutilising
or not using the robot at all (Floyd, Drinkwater & Aha, 2014). As Barnes & Jentsch (2010)
identified, the key to a successful relationship betweenman andmachines is in howwell they
can work and adapt to each other. This can develop through the form and structure of the
robot that in turn helps establish social expectations. In addition, a robot’s morphology can
have an effect on its accessibility and desirability (Fong, Nourbakhsh & Dautenhahn, 2003).
The research presented in this paper explores how robot aesthetics can heighten participants
ability to trust robots. Participants were introduced to an array of robot visualisations (face
and chest) and asked to note their impressions towards each visualisation and whether or
not they trusted the robot. This enabled the researchers to investigate how design elements
and their combined aesthetic arrangement can act as emotional stimuli influencing the
ability to trust each robot. In detail, by using various design elements (i.e., colour, blurriness,
and tone), we were interested in better understanding how we design for the fundamental
principles of aesthetic order in human–robotic interaction.We anticipate that uncertainties
in and between the visualisations will greatly influence a participant’s willingness to accept
the robot (i.e., The cohesion of messages, positive and balanced stimuli, non-invasive
colours, etc.). This paper highlights not only the impact of risks and uncertainties created
by the visualisations on the human–robot interaction but also the potential of robot
aesthetics to commence a trusting relationship.

LITERATURE REVIEW
Human–robot interaction
Human-Robot Interaction (HRI) is a field dedicated to understanding, designing, and
evaluating robotic systems for use by or with humans. (Huang, 2016, p.1). Yanco & Drury
(2002) claim that Human–robot interaction is a subset of the field of human–computer
interaction (HCI) and that HRI can be informed by the research in HCI. Scholtz (2002)
argues that there are many differences between HRI and HCI, dependent on dimensions
in the environment, system users and physical awareness. ‘The fundamental goal of HRI
is to develop the principles and algorithms for robot systems that make them capable of
direct, safe, and effective interaction with humans’ (Feli-Siefer & Mataric, 2010, p.86). It is
the ‘effective interaction’ which is of interest to the authors of this paper (i.e., the ability
to build a trusting relationship through effective human–robot interaction). HRI quality
may be strongly dependent on the capacity of the communication channel(s) to carry
information between human and robot (Steinfelf et al., 2016). Robotic communication is
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based on three components, the channel of communication, communication cues, and
the technology that affects transmission. Information can be communicated through three
channels: visual, audio, and environmental (Billinghurst, Chen & Chase, 2008). The authors
of this paper will be focusing on the visual channel of communication and building affective
visual communication cues. A socially interactive robot should be able to communicate
its trustworthiness through the use of non-verbal signals including facial expressions
and bodily gestures (Stoeva & Gelautz, 2020). The face is capable of expressing a range of
emotions that others generally have little difficulty identifying (Landrigan & Silver, 2007).
Richert et al. (2018) considers these human-like designs combined with the integration
of natural user interfaces could enhance the overall acceptance and interaction of these
technologies. In more detail, Duffy (2003) states a robot’s capacity to be able to engage
in meaningful social interaction with people requires a degree of anthropomorphism
(human-like qualities). As Gurthrie cited in Daminao & Dumouchel (2018) points out,
the tendency to see human faces in ambiguous shapes provides an important advantage
to humans, helping them to initially distinguish between friend or enemy and establish an
alliance. A robot’s appearance at the first interaction can affect how a robot is interpreted
by its users, and in turn how the user may interact with the robot (Luptetti, 2017). In
terms of human–robot interaction the physical appearance can have an important affect
(Canning, Donahue & Scheutz, 2014), yet before humans are able to effectively interact
with robots, they must be able to accept and trust them (Billings et al., 2012). This trust is
what is of real interest to the authors of this paper, in order to influence how we design
for effective trusting relationships between human and robot through their physical and
visual appearance.

Aesthetic interaction
‘Aesthetic interaction is not about conveying meaning and direction through uniform
models; it is about triggering imagination, it is thought-provoking and encourages people
to think differently about interactive systems, what they do and how they might be
used differently to serve differentiated goal’ (Petersen et al., 2004, p.271). Aesthetics can
be classified as a core principle of design which encompasses a design’s visually pleasing
qualities, functionality, and emotional considerations (Interaction Design Foundation, n.d.).
Formany people, an understanding of a robot is achieved through the senses and the reading
of bodily form and gestures, facial and chest screens, and sounds as opposed to only the
reading of a screen. As a result, it is very important for us to be able to consider the aesthetic
processes involved in our interaction with robots. Research shows that aesthetics can afford
the construction of associations and meanings through feelings, intuitions, thoughts,
memories, etc. (whilst we interact with computers), which we can then stitch together to
form a deeper understanding and appreciation of what we are seeing/experiencing (Carroll,
2010). Indeed, the aesthetic interaction can promote a relationship between the user and the
computer (i.e., robot) that encapsulates a person’s full relationship—sensory, emotional,
and intellectual. In doing so, it can entice an ‘engaged interaction’ which can change the
user’s perceptions and interpretations (Carroll, 2010). In our human—robotic interactions,
the authors of this paper feel that the aesthetic provides many opportunities to enhance our
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human—robotic experiences particularly our trust and acceptability of robots. As Prinz
cited in Holmes (2017) points out, our conscious experience consists of perceptions with
shades of feelings—objects (such as robots) can be comforting or scary, sounds are pleasing
or annoying, our body feels good or bad—which all can play a crucial role in guiding our
behaviours. According to Moors, Ellsworth & Frijda (2013), the basic premise of appraisal
theories is that emotions are adaptive responses, which reflect our appraisals of features of
the environment/events that are significant for our well-being. Essentially, emotions are
elicited by evaluations (appraisals) of how events and situations relate to our important
goals, values, and concerns. Scherer (2009) suggests that there are four major appraisal
objectives that an organism needs to reach to adaptively react to a salient event: relevance
(i.e., how relevant is this event for me?), implications (i.e., what are the implications or
consequences of this event and how do they affect my well-being, and so on?), coping
potential (i.e., how well can I cope with or adjust to these consequences?), and normative
significance (i.e., what is the significance of this event for me-concept and for social norms
and values?). Interestingly, each emotion has a unique appraisal structure. For example,
the aesthetic emotion interest involves two appraisals (Silvia, 2005): appraising an event as
new, complex, and unfamiliar (a high novelty-complexity appraisal) and as comprehensible
(a high coping-potential appraisal). Interest causes an emotional and motivational state
that facilitates exploration, engagement, and learning (Silvia, 2008); it reflects both the
emotional and cognitive aspects of engagement (Ainley, 2012). In terms of the aesthetic
emotion of knowledge, firstly, the emotions stem from people’s appraisals of what they
know, what they expect to happen, and what they think they can learn and understand
(Silvia, 2009). Secondly, the emotions, for the most part, motivate learning, thinking,
and exploring, actions that foster the growth of knowledge (Silvia, 2009). It is generally
agreed that the aesthetic information process starts with input from a stimulus, then
continues through several processing stages (i.e., Connected to more profound memorial
instances) and ends in the final decision-making (i.e., an evaluative judgement of the
stimulus) (Markovi’c, 2012). Locher (2015) describes the aesthetic experience as occurring
in two stages. Firstly, an initial exposure to the artefact where a viewer spontaneously
generates a global impression/gist of the work and secondly, where aesthetic processing
ensues (i.e., directed focal exploration to expand knowledge and contribute to a viewer’s
interpretation, aesthetic judgement, and emotions regarding the artefact). Zajonc (1980),
claimed that it is possible for us to like something or be afraid of it before we know
precisely what it is and perhaps even without knowing what it is. Since this, there have
been many researchers who have begun to explore automatic affective processing; the
premise is that beings are able to establish good and bad stimulus before establishing
contact with the stimulus (De Houser & Hermans, 2001). In light of this, the evaluation is
subject to the interaction between an event and the appraiser (Lazarus, 1991). Importantly,
the emotions are elicited according to the way a person appraises a situation (Ellsworth
& Scherer, 2003). Significantly, however, research shows that certain aesthetic elements
can trigger cognitive and affective processes into motion to influence aesthetic appraisals
and more especially how a person aesthetically appraises a situation (Blijlevens, Mugge &
Schoormans, 2012). In fact, stimuli that evoke aesthetic responses are always composites of
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multiple elements that do not ordinarily occur together, and when they do, their joint effect
is different in kind from the separate effects of the individual elements (Mechner, 2018).
In terms of visual elements such as colour, line, form, and composition priming certain
emotions, Melcher & Bacci (2013) found that there is a strong bottom-up and objective
aspect to the perception of emotion in abstract artworks that may tap into basic visual
mechanisms. In his book, James (2018) considered aesthetic emotions to be the immediate
and primary sensory pleasure resulting from exposure to a stimulus. Therefore, we ask,
can these aesthetic emotions/interactions, in turn, influence how robots are received and
how we make decisions to trust them? Indeed, apart from the logical schemes and sense
perception, there is also a powerful ‘felt’ dimension of experience that is prelogical, and
that functions importantly in what we think, what we perceive, and how we behave (Cox
&Gendlin, 1963). What is of real importance to the authors of this paper is the interplay
between the aesthetic, cognitive, and affective processes in how we make decisions to trust
a robot; in particular, how the in-take of aesthetic information from a robot’s facial and/or
chest visualisation can influence how we trust the robot.

Trust, risk and uncertainty
‘‘Trust is a phenomenon that humans use every day to promote interaction and accept risk
in situations where only partial information is available, allowing one person to assume that
another will behave as expected.’’ (Cahill et al., 2003, p.53). For many people, trust is the
ability to hold a belief in someone and/or something can be counted upon and dependable,
by accepting a level of risk associated with the interaction of another party (Paradeda et
al., 2016). A willingness to potentially become vulnerable to the actions of others, based
on the expectation that the trusted party will perform actions essential or necessary to
the trustor (Mayer, Davis & Schoorman, 1995). According to Gambetta (2000), trust can
be summarised as a particular level of subjective probability with which an agent assesses
another in performing a particular action. That trust implicitly means the probability
that an action by others will be beneficial enough to consider engaging in cooperation
with them despite the risks. Indeed, trust can be evaluated as a probability; however, it is
nevertheless a cerebral contract between trustee and trustor that develops within relations
between humans (Coeckelbergh, 2012). In terms of the robot aesthetic, the authors of
this paper feel that we have a unique opportunity to enrich further our knowledge of
how designing for trust may afford a unique robotics experience. In situations such as
trusting robots where a person’s past behaviours and reputations are unknown, we acquire
other sources of information to determine a person’s motivations (De Steno et al., 2012).
These other sources of information are used to communicate understanding, which can
be done through the use of empathy. As Lee (2006) points out, an agent who appears
to be empathetic is perceived as more trustworthy, likeable, and caring. Robots do not
possess the ability to build traditional relationships with humans; therefore, they rely
heavily on visual appearance to portray their trust. As Lee (2006) reported, human to
human perceptions of trust is widely reliant on the empathy they have for one another.
Research shows that a common way in which people convey empathy is in the use of
their facial expressions (Riek & Robinson, 2008). In robot–human interaction, research
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has shown that facial features and expressions can portray important information about
others trustworthiness (Valdesolo, 2013). For this paper, it highlights the importance of
considering the design elements to initiate positive affective processes. Research byMerritt
& Ilgen (2008), shows that widespread implementation of automated technologies has
required a greater need for automation and human interaction to work harmoniously
together. The conclusion has supported that individuals would use machines more if they
are trusted than those they do not. It has generally been agreed that where there is trust,
there is a risk; as Gambetta (2000) indicated, trust is a probability; as you determine the
level of risk, you can make alternations to the probability of trustworthiness. Lewis, Sycara
& Walker (2018) states, the introduction of anthropomorphism poses serious risks, as
humans may develop a higher level of trust in a robot than is warranted. Additionally,
risks do not always reflect real dangers, but rather culturally framed anxieties originating
from social organisation (Wakeham, 2015). Interestingly, research by Robinette et al. (2016)
shows that in certain situations, a person may over-trust a robot while mitigating risks and
disregarding the prior performance of the robot. However, another dimension of trust is
uncertainty. According to Wakeham (2015), who described being uncertain as having an
obscured view of the truth, with a limit on what an individual might know. Uncertainty can
cause a restriction in the ability to trust; with uncertainty, you are unable to know all that
can happen, resulting in trust becoming a leap of faith (Nooteboom, 2019). The decision
whether or not to trust a robot based on the uncertainty presented can trigger ethically
adjusted behaviours that aim to avoid dangers and minimise potential risk (Tannert,
Elvers & Jandrig, 2007). Viewing uncertainty from a psychological perspective presents
both subjective uncertainty and objective uncertainty. Subjective uncertainty represents a
person’s feelings, while objective uncertainty is concerned with information a person has
(Schunn & Gregory, 2012). In more detail, research has shown how uncertainty influences
people’s ability to trust (Glaser, 2014), yet in the same way, trust is a way of dealing with
uncertainty and objective risks (Frederiksen, 2014).

MATERIALS AND METHODS
This study was conducted at Cardiff Metropolitan University from the 31st of March 2020
to the 15th of April 2020 and was designed to capture the perception of participants feelings
and attitudes towards trusting robots. The study was conducted using the powerful online
survey software: Qualtrics. Participants were selected through stratified random sampling
to target both participants with past robotic experience and those without. Through
distributing the questionnaire on social media, special robotic interest groups, and online
forums, the authors were able to obtain participants from a diverse participant pool. A
total of seventy-four participants from the age of 16 plus years (50 female & 24 male)
completed the study from a varied demographic. Participants resided globally (i.e., Europe,
Africa, Asia, Australia, North America, and South America) and captured an assortment
of participants. The questionnaire took approximately thirty minutes in duration. All
graphics were generated using Adobe Photoshop, and the study and questions asked had a
strong aesthetic visual component.
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The study mainly consisted of quantitative questions in order to provide summaries
through descriptive statistics. Additionally, an assortment of questions required participants
to engage in qualitative questions, which then enabled analysis to enrich interpretations
and uncover similarities. The questions were separated into two categories to target both
the general acceptance of robotics and specific questions relating to the Canbot U03 robot.
In order to not influence a participant’s feelings and past experience with robots, the
Canbot U03 was not shown during the first block of questions. Participants were provided
with a brief definition of trust at the start of the questionnaire ‘‘To Believe that someone is
good and honest and will not harm you, or that something is safe and reliable’’ (Cambridge
Dictionary, 2021, trust entry).

Once participants had concluded the initial preparatory questions, they were introduced
to the opening visual of the Canbot U03 robot. Participants were presented to a Canbot
U03 (see Fig. 1) with no visual modification and asked whether or not they would trust this
robot based on its visual appearance (i.e., only based on the design features). To address the
concepts of a participant’s ability to trust the Canbot U03 robot, participants were asked
to envisage situations in their everyday life where they may encounter a robot. A short list
of possible situations and jobs roles were provided to participants (i.e., Teacher, doctor,
receptions, bus driver, etc.).’’

Participants were then presented with a series of questions with different aesthetic
modifications throughout. The first modifications came with the Canbot U03 robot
presented with a series of cartoon facial expressions portraying different emotions.
Participants were prompted to identify the robot’s emotion and whether or not they felt the
robot was more or less trusting than before. To detail, questions such as the following were
asked to participants: How trustworthy is this robot’s appearance?, What emotion do you

think the robot is feeling?, Does this visual change affect your ability to trust the robot?,

How does the robot make you feel with this appearance? Participants were also asked to
provide descriptions on the following questions: What characteristics do you believe only

robots should have? How do you design a robot that people would trust?

The following block of questions prompted participants to consider the anthropomor-
phic characteristics of the robot (see Fig. 2). Participants were introduced to a series of
robots that related to having human features; these questions probed participants for their
feelings towards these powerful visual modifications.

The next section of questions was related to how the design element colour influenced
the participant’s opinions and description of the robot. This required participants to
associate words (i.e., dangerous, happiest, trusting, unpredictable, and unrealistic) with an
array of Canbot U03 robots with different colours hues. Participants were presented with
eight robot visualisations (see Fig. 3), all with varying colour hues (i.e., Pink, orange, blue,
yellow, etc.) and prompted to associate the expressive wording with an individual Canbot,
no Canbot or all Canbots.

Participants were also introduced to a range of visualisations with contrasting images
such as conflicting facial expressions and chest screen imagery (i.e.,Happy facial expression
+ Danger symbol on the chest). Participants were asked a series of questions such
including: Which Canbot would you describe as most uncertain?, What impact did the
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Figure 1 Original image of the Canbot-U03 robot.
Full-size DOI: 10.7717/peerjcs.837/fig-1

cohesion of screens have on your decision? and Does the facial expression overrule the

icon on the chest screen when considering the Canbot’s emotions? These questions aimed
to understand how the level of cohesion between the chest and facial screens can influence
a participant’s willingness to trust the robot.

Finally, to further probe the concept of risk, participants were presented with
mathematical problems that would be too complex for human calculation (i.e., 887⇥ 974&
997⇥ 1,066). Participants were then be asked to identify which Canbot (A–H) displayed the
correct solution upon their chest screen. This question required participants to determine
the answer they deemed correct based solely on trusting the robot’s physical appearance.
Optional text boxes were provided throughout the questions to allow participants to
expand and express opinions on the robot’s appearances.

The Ethics Board at Cardiff Metropolitan University approved the study
(CST_2020_Staff_0002), and participants involved were all provided and signed an online
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Figure 2 Canbot-U03 robot with human eyes modification.
Full-size DOI: 10.7717/peerjcs.837/fig-2

consent form to participate in the study and for the academic use of the non-identifiable
data.

RESULTS
The observations indicate that a participant’s willingness to trust a robot was heavily
impacted by the aesthetic elements they were exposed to, and whether or not the participant
had past experiences with robots.When asked about Fig. 1, fifty per cent of participants said
they would trust this robot, twenty-eight per cent were unsure, and the remaining twenty-
two per cent recorded that theywould not trust the robot. Interestingly, anthropomorphism
did not encourage more to trust the robot. Figure 2 (Robot B) shows how the introduction
of the face impacted participants who first trusted the robot, twenty of the thirty-seven
(fifty-four per cent) of participants who first trusted were now non-trusting or uncertain
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Figure 3 Multiple Canbot-U03 robots with different colours hues.
Full-size DOI: 10.7717/peerjcs.837/fig-3

about trusting the robot. However, anthropomorphism did positively influence those
unsure of trusting the first robot introduced, with fifty-two per cent changing their
opinion from ‘unsure’ to ’yes’ to trust (see Fig. 4). In the human-like visualisations, it
seemed participants had different opinions on how robots should be designed for trust.
One participant (P72) said, ’Less human-like as this makes them feel more deceptive’ while
another described human features as ’creepy’ and ’People may become intimidated by
implementing human behaviours into a machine’.

When probed further into how designing for trust, participants said, ‘Give them their
own personality that isn’t based on human expression ‘and that ’human features make the
model ‘creepy’. One participant notes that the introduction of a realistic human face ‘makes
people uneasy’. When adding human eyes to the robot visualisation (see Fig. 2) participants
were asked their feelings on the realistic eyes. 80 per cent of participants expressed their
dislike of this appearance, making them feel ‘confused, scared, worried and surprised’. One
participant noted ‘the need for distinction between human and robot’ and ‘the inclusion
of human likeness may be intimidating’.

When asked Would you trust this robot? and What do you think this robot feels?

In the blurry face visualisations (Fig. 5), it appeared participants weremore apprehensive
about trusting the robot. The findings show that half of the participants were able to
correctly identify the robot’s emotional cue as ‘happy’ despite the introduction of blurriness.
In contrast, the other half of the participants were torn between ‘confused, angry, uncertain,
uneasy, and uncomfortable’ for the robot’s emotion. The introduction of the dissimilar
stimuli of the happy facial expression and the blurriness presented participants with
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Figure 4 Question to participants: would you trust this Canbot with the visual changes? (A) Indicates
participants responses to Canbot with no visual changes. (B) Indicates participants responses to Canbot
with smiling cartoon facial expression.

Full-size DOI: 10.7717/peerjcs.837/fig-4

Figure 5 Canbot with Blurry facial expression and tree map diagram displaying responses from ‘‘How
does this Canbot make you feel’’?

Full-size DOI: 10.7717/peerjcs.837/fig-5

uncertainties through the contrasting messages each present (i.e., Happy face – trust,
blurriness – uncertain). The results were clearer when prompting participants away from
identifying which emotion the robot depicted to how these changes made them feel. The
participants concerns were expressed when asked about how the Canbot made them feel,
with the majority of responses including terms such as uncertain, uneasy, and confused.

In addition, the findings show different impressions towards facial features when faced
with the decision to trust (i.e.,What robot is providing you with the correct information?).
Interestingly sixty-six per cent of participants selected robot B (Fig. 6) as the most trusting,
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Figure 6 (A–E) Heatmap displaying participants responses to: what robot would you trust is giving
you the correct answer?

Full-size DOI: 10.7717/peerjcs.837/fig-6

despite the introduction of a hybrid robot (Robot D - Fig. 6). Robot five was the next
most accepted (fifteen per cent), yet on closer inspection the participant’s speed to answer
this question was significantly higher (fifty percent increase) than other responses, thus
indicating the potential use of a calculator to determine the correct answer to the equation.

Similar results were seen in Fig. 7, with the alterations to the chest screen affording
uncertainty to trust the robot to provide the correct answer. We asked participants to
indicate which of the six robots posed the correct answer to the 997*1066 by clicking
on the chosen robot. Figure 7 displays the frequency distribution of clicks over the six
distinct robot images. Sixty-four per cent of participants selected robot B (the robot with
limited visual modifications) as most trusting despite providing incorrect information.
Interestingly, robot B presented the incorrect answer to the mathematical equation.

Moreover, participants felt that in order for a robot to be trusting, there is a need for ‘a
screen that clearly shows the message that is being transmitted’ and that ‘I would expect the
screen display to match with any expressions’. In terms of harmony between face and chest
screen, one participant highlighted that ‘It would be difficult to trust a robot with a face
and another image within the robot screen. I would trust better with just one option.’ In
particular, when exposed to Fig. 8, participants felt that the facial expressions produced a
contradicting message to the one upon the chest screen. With sixty per cent of participants
declaring the robot as untrustworthy and a further thirty-eight per cent unsure whether
or not to trust the robot. One participant could not trust the robot as ‘I could not take
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Figure 7 (A–E) Heatmap displaying participants responses to: what robot would you trust is giving
you the correct answer?

Full-size DOI: 10.7717/peerjcs.837/fig-7

Figure 8 Robot with confused facial expression and participants responses to: would you trust this
robot is telling the truth about their age?

Full-size DOI: 10.7717/peerjcs.837/fig-8

anything this bot says seriously with that expression’. This highlights the true impact of the
misaligned messages on participants ability to trust.

DISCUSSION
In this study, we investigated the impact of the aesthetic order of facial and chest
visualisations on participants willingness to trust robots. In particular, it considered the
potential risks and uncertainty afforded by certain aesthetic orders to the human–robotic
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trusting relationship. Our results show the clear influence that past experience had on
a participant’s willingness to trust the original robot. Particularly, the visualisation with
no modifications was found to have a substantially higher percentage of trust in those
with past experience. Participants with no past experiences were relying solely on the
visual appearance to determine their level of trust. These findings are in line with what
Sanders et al. (2017) hypothesised and discovered, in detail, how those participants with
past robotics experience would lead to a higher trust of robots and a better positive attitude
towards them.

Interestingly, we found that a blurred facial expression significantly influenced whether
participants trusted a robot. The blurred facial and chest screen visualisations afforded
uncertainty and resulted in a participant’s unwillingness to trust a robot.

Figure 7 displayed the extent that physical appearance had on the decision participants
made to trust a robot. With a participant’s ability to roughly estimate the correct answer
not largely adopted by participants, we can only conclude that the physical appearance was
the determining factor in the decisions. Interestingly, over half the participants selected
robot B, which presented the incorrect answer to the mathematical equation.

Based on previous research that shows colours can influence various moods (Kurt &
Osueke, 2014), we predicted similarly that the aesthetic element colour could initiate
different affective responses when applied to a robot. We tested that hypothesis by
introducing participants to an array of robot visualisations that applied an assortment
of distinct colour changes. We found that comparably participants were following known
psychology of colour associations when selecting what feelings and terms they associated
to the robots with the assortment of colours. For example, Fig. 9 displays the words
participants associated with the array of colours and other visual modifications. As we
hypothesized, certain colours had followed the known associations of related words, such
as when participants were promoted to associate the red coloured robot to a particular
word. Following the commonly known western culture word associations with the colour
red (i.e., dangerous, excitement, festive, etc.) (Cousins, 2012), we evaluated its affect while
present on a robots outer shell and found a similar result of red being associated with the
term dangerous.

However, it is important to consider how cultural beliefs and geographical regions may
also have an influence on a person’s perceptions of colour. A particular colour hue can have
multiple meanings and interpretations to people in different regions of the world (Kurt &
Osueke, 2014). It is critical that when designing a robot to afford trust that these cultural
backgrounds, geographical location, and beliefs are carefully considered when selecting
a robot’s hue to be fit for purpose. Additionally, it is important that this same level of
consideration is taken for other design elements, in order to evaluate how the different
designs are perceived in different regions, backgrounds, and faiths.

The research has also highlighted the importance of cohesion between the facial screen
and chest screen. In the question prompting participants to consider the information on
the chest screen (see Fig. 7), the participants were never asked whether or not they trusted
the robot as a whole, only if they trusted the information on the screen. However, the
negative stimuli released by the facial expression demonstrated that most participants
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Figure 9 Sunburst visualisation displaying the visual modifications and participants associated word-
ing.

Full-size DOI: 10.7717/peerjcs.837/fig-9

declared the robot as not trustworthy. Moving forward, when designing a robot that can
be trusted, it is important to consider all elements, as stimuli from other visual outputs can
potentially influence an independent communication channel.

CONCLUSION AND FUTURE WORK
This research has shown that robots have the unique ability to create an emotional
connection with humans through the use of facial expressions and aesthetics. As
documented, we have seen the introduction of anthropomorphism which creates a fine line
between increasing trustworthiness and becoming ‘scary’. Nevertheless, the non-physical
humanlike anthropomorphic designs (cartoon designs) encouraged participants to trust
the robots further, showing the unique ability to improve their facilities for empathy.
Moreover, this research has shown that the face is not the sole visual aesthetic that can
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be utilised to initiate affective processes. The chest screen provides an additional entity to
further enrich the potential to provide an engaging experience. Ultimately, the cohesion
between themultiple screens is an important consideration for designing socially acceptable
robots. As is the design elements and principles to understand how their aesthetic order
can play such an important role in initiating a trusting robotic experience.

Going forth, we feel there may be interest in replicating the study but utilising actual
robots. We acknowledge there is still a substantial amount of research required to fully
understand how we form trusting relationships between human and robot. However,
we feel this study paves the way for future studies that involve aesthetic physicalisation,
where further sensory cues can be tested to evaluate their influence on our trusting ability
of robots. Additionally, this research touched upon how design elements may influence
different participants from different cultural backgrounds, geographical locations, and
beliefs. We feel it would be of interest to further explore the potential to develop culturally
appropriate robots.

Moreover, it would be interesting to further expand on the use of aesthetic designs to
evaluate how further modifications (i.e., different colour tones, design elements, design
principles, etc.) can affect and in some cases, increase a participant’s willingness to trust a
robot.

Finally, we believe there would be value in understanding how the trusting relationship
between human and robot may develop over time. Whilst this study provides details on
the initial engagement/interaction, there may be interest to explore aesthetic designs in
different situations and time scales.

Throughout this research, we have explored howwe can build trusting relationships with
robotics through aesthetic designs. In future work, better consideration of human-centered
design perspectivesmust be exploredwhen considering building trust. The research explores
participants not trusting robotics as injudicious when the reason not to trust is still a valid
and acceptable response in certain situations.
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ABSTRACT
Human-like features, like toe-off, heel-strike can enhance the performance of bipedal
robots. However, few studies have considered the anthropomorphism of walking
planning. Fewer studies have achieved their toe-off, heel-strike gait planning
framework in a child-sized humanoid robot platform. This paper presents a human-
like walking control framework based on the Divergent Component of Motion
(DCM) com planning method that enables a child-sized humanoid robot to walk
with a humanoid pattern with a speed of 0.6 s per step a strike of 30 cm. The control
framework consists of three parts: the human-like gait generation of the center of
mass (CoM) and swings foot trajectory, the dynamic replan in phase switch and the
upper body stabilization controller. The dynamic replanning of the CoM and foot
trajectory can efficiently decrease the vibration in the step-phase switch. The up-body
stabilization controller can reduce the up-body swing in walking and increase the
robot's stability while walking. The robot uses a mems-based inertial measurement
unit (IMU) and joint position encoders to estimate the current state of the robot and
use force-sensitive resistors (FSR) on the robot foot to identify the actual step
phase of the robot. None of these solutions is high-cost or difficult to integrate with a
child-size robot. Software simulations and walking experiments are using to verify
the motion control algorithm. The effectiveness of the pattern generation and the
controller can realize more human-like walking styles in a child-size robot are
confirmed.

Subjects Autonomous Systems, Robotics
Keywords Humanoid robot, LIPM, Biped robot, Heel-contact and Toe-off

INTRODUCTION
As we know, the walking pattern generation and control of biped robots have been an
ongoing research hotspot in recent years. Many researchers use the linear inverted
pendulum (LIP) as the model for the gait generation algorithm to utilize the stable walking
trajectory. Nevertheless, the Hypothesis of LIP requires the center of mass (CoM) of the
robot to stay at the same height, which is why the robot must walk with a bended knee. On
the other hand, many people expressed the criticism that this kind of walking is not
human-like.

Many researchers have tried to solve this problem by demonstrating using their separate
methods. Ogura et al. (2006) designed a humanoid robot, WaBIAN-2R, with two passive
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joints in its toe to utilize a more human-like walking pattern. Lohmeier (2010) is another
humanoid robot with 4 joints in each foot designed by Lohmeier (2010) and some other
researchers like Li et al. (2010) and Kurazume et al. (2005) and other researchers (Kim
et al., 2008; Morisawa et al., 2005; Sekiguchi et al., 2006) have also realized good looking
human-like biped locomotion by real robots. However, their works rely on special
mechanisms of the robot’s feet. Nevertheless, these kinds of designs are not easy to
implement in a child-size humanoid robot. In recent years, some scholars (Carpentier
et al., 2016; Feng et al., 2013; Kuindersma et al., 2016; Leng et al., 2020; Wieber, 2006) are
also adopting optimization-based methods to achieve robot walking. However, the
versatility of these methods is outstanding, but the implemented gait algorithm is not
universal and may consume more time when calculating.

This paper presents a human-like walking control framework based on the DCM
theory. This framework includes a footprint generation unit that can generate footprints
according to the robot’s motion instructions. The robot can dynamically generate the
CoM and foot trajectory from the given footprint position. Considering the disturbance
during walking, a robot stability controller is implemented to improve the robot’s stability
during operation. We validate our approach in physically realistic simulations and use
the Roban child-sized humanoid robot with a height of about 68 cm. From Fig. 1, we can
see the specific dimensions of the experimental robot used.

This paper is organized as follows. The “Methods” section describes the basic theory of
the gait trajectory generation of a biped robot based on the capture point (CP) theory. On
this basis, we introduce the modified CoM trajectory and foot trajectory generation
methods needed to realize the human-like gait in the prospect. The “Stablizer” section
presents an overall robot human-like walking control framework, followed by an event-
based switching mode of one-foot and two-foot support. Finally, a stable controller for a

Figure 1 Roban humanoid robot. Full-size DOI: 10.7717/peerj-cs.797/fig-1
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child-size robot with a low-cost modular actuator is proposed. The “Experiments” section
constructed the overall robot dynamics simulation model and verified the corresponding
human-like gait control algorithm in the simulation and the real object.

METHODS
Pattern generation
Linear inverted pendulum and capture point
The linear inverted pendulum (LIP) model is a major dynamic model used for domestic
modeling of biped robot walking (Choi et al., 2007; Shuuji et al., 2010; Sakagami et al.,
2002; Sugihara, 2009). The following assumptions must be met:

1. The robot is seen as a mass point and a massless light rod

2. CoM of the robot is held at constant height Z

Under the premise of the above linear inverted pendulum model, the motion mode of
the center of mass of the robot is decoupled in the front and rear motion direction and
the left and right motion direction. Therefore, the motion patterns in the center of mass of
the robot in these two directions during walking can be considered separately. Figure 2
gives an overview of the whole dynamic model. The ground reaction force Ff is
collinear with the vector Pcom ! Pað Þ. Fv is the vertical component of Ff. It compensates
for the gravitational force Fg acting on the CoM. By comparison of the force parallelogram
and the geometrical parallelogram we find

Fh
Fv

¼ Fr
Fg

¼ m€xc
mg

¼ xc ! px
zc

(1)

Therefore, an expression for the horizontal acceleration of the CoM is

Figure 2 Linear inverted pendulum model. Table for notations (Notation & Description). Zc: The
robot’s Center of Mass in x axis; Ff: The ground reaction force; Fv: The vertical component of Ff;
Pcom: The robot’s Center of Mass position; Pa: Total moment acting on the CoM; Xc: The robot’s Center
of Mass in x axis; pz: The robot’s Zero Moment Point. Full-size DOI: 10.7717/peerj-cs.797/fig-2
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€xc ¼ x2 xc ! pxð Þ (2)

where x ¼
ffiffiffiffiffiffiffiffiffi
g=zc

p
and px is the x-coordinate of the Zero-Moment-Point (ZMP). ω has to

be positive in this paper. The complete system dynamics of the LIP model is the following
equation

_r ¼ 0 1
x2 0

" #
rþ 0

!x2

" #
px (3)

where r ¼ xc; _xc½ 'T . The analytical solution of (3) is

rðtÞ ¼ coshðxtÞ 1
x
sinhðxtÞ

x sinhðxtÞ coshðxtÞ

" #

ro þ
1! coshðxtÞ
!x sinhðxtÞ

" #
px (4)

Pratt et al. (2006) and Hof, Gazendam & Sinke (2005) independently introduced the
Capture Point (CP). The Capture Point is a point on the ground where the robot has to
step to complete rest, which means that the center of mass (CoM) can fully stop
horizontally at that point. For a general robot state r ¼ xc; _xc½ 'T it is defined as

nx ¼ xc þ
_xc
x

(5)

Since we have the definition of Capture point. We need to derive the dynamics based on
the capture point theory. Solving (5) for _xc we can get

_xc ¼ !x xc ! nxð Þ (6)

We find that _xc has a stable first-order open loop dynamics with time constant
1
x
. By

differentiation (5) and (6) we know that

_nx ¼ _xc þ
_xc
x

¼ x nx ! pxð Þ (7)

The Capture Point ξx has an unstable first-order open loop dynamics. Figure 3 show
the coupling of the two states XC and ξx. By considering (6) and (7) we find the systems
dynamics is

_h ¼ !x x
0 x

" #
hþ 0

!x

" #
px (8)

where x ¼
ffiffiffiffiffiffiffiffiffi
g=zc

p
, h ¼ xc; nx½ 'T and px is the ZMP.

Figure 3 Capture point model. Full-size DOI: 10.7717/peerj-cs.797/fig-3
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Step planner
In the process of planning the robot’s walking by the upper-level robot motion controller,
it is usually only the target position and posture of the robot. Therefore, a footprint
generator is needed to convert the target pose difference data into the target footprint data
of the biped robot. For example, the forward movement of the syncline needs to be
gradually given the footprint data of the forward movement of the syncline, and the CP
trajectory planner introduced below requires the information of the last few footprints
to plan a better centroid trajectory. We expect a walking framework that can continuously
plan the robot’s trajectory rather than intelligently let the robot walk a certain number of
steps. For biped robots, the usual planning goal of the upper planner is to run from
the current position to another given target position, so the corresponding motion
relationship is often given in the form of required increments. The motion parameters
given by the upper-level planning can be expressed as (dx, dy, θ). Several planning
examples are showing below:

(1) Forward/backward step planning

As shown in Fig. 4. The forward/backward trajectory planning algorithm is relatively
simple. The black steps are the footprints calculated directly through the given running
instructions, and the red footprints are assumed to be a series of steps generated by the
robot according to the gait pattern of the robot walking footprints. According to the
subsequent centroid trajectory generator, it can be found that when the number of
footprints in the supplementary plan reaches (4), the first few single foot support phase
trajectories in the overall centroid trajectory generated by these footprints are basically the
same. Special, For the forward or backward gait, the trajectory of the center of mass in the
one-foot support phase is symmetric about the xoz plane.

(2) Side step planning

As shown in Fig. 5. For the robot footprint planning required for the side shift of
the biped robot, in addition to the footprints that need to generate symmetrical footprints,

Figure 4 Forward step planning. Full-size DOI: 10.7717/peerj-cs.797/fig-4
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it is also necessary to consider the interference problem of the swinging feet that may
be caused in the subsequent trajectory planning process. A simplified strategy is for the
lateral direction. To run the command, we need to move the foot in which direction first
and then move the foot in the other direction. At the same time, the other foot is resting on
the foot according to the planned foot gap.

(3) Steering step planning

As shown in Fig. 6. The footprint generation of the steering gait algorithm is similar to
the generation of the side-shift gait, and it is also necessary to consider the problem of
footprint interference to determine which foot to start from. In addition, to achieve more
block steering, the robot’s feet will turn during the operation. This planning method
will more easily cause interference between the two feet. This situation will be checked in
the gait planner to avoid interference during the actual operation of the robot. If the
footprints are generated, When the detector detects that the footprint will interfere, it will
limit the steering angle to a range that does not cause interference.

(4) Mix step planning

As shown in Fig. 7, combining the above-fixed gait pattern generation, the footprint
generator we proposed can essentially generate corresponding footprints for any form of
command position incremental input. For example:

Figure 5 Side walk planning. Full-size DOI: 10.7717/peerj-cs.797/fig-5

Figure 6 Steering step planning. Full-size DOI: 10.7717/peerj-cs.797/fig-6
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1. It can use both forward walking and side walking at the same time. Features, plan a
trajectory that allows the robot to walk obliquely forward.

2. The characteristics of simultaneous side walking and turning can be used to allow the
robot to achieve a larger angle of turn.

CoM trajectory generator
In common biped robot application scenarios, such as Englsberger et al. (2011), the usual
method is first to generate a reference trajectory of the CP point and then implement a
feedback controller so that the CP point of the actual robot can track the reference
trajectory of the CP point. However, this study did not use the methods in the references.
Since the experimental platform used in this article is a child-size humanoid robot.
Suppose we directly use the method described in the literature to implement it. In that case,
the following two problems will arise: On the one hand, the experimental robot we use is a
module. The resolution and accuracy of the encoder of the modified drive joints are
not very high, resulting in more incredible noise when reading the joint angles. On the
other hand, we are using a MEMS-based IMU, and the obtained linear acceleration and
angular velocity noise are relatively large. Due to the above two problems, the robot
will have much noise in its speed estimation, so there will be much noise in the estimation
of the cp point. In this research, we further generate the desired CoM trajectory
through the CP point trajectory and then calculate the joint angle of the robot through the
inverse kinematics solution of the robot.

The CP point correlation theory is an inference about the linear inverted pendulum
correlation algorithm. The definition of CP point is described above. The CP point
correlation theory can be used to calculate the stability of the biped robot during its
operation. Also, similar to the linear inverted pendulum model, we can use the theory of
CP point to get the centroid trajectory of the robot operation more conveniently when the

Figure 7 Arbitrary step planning. Full-size DOI: 10.7717/peerj-cs.797/fig-7
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footprint position changes. Generally speaking, it is necessary to obtain the footprint
information of all the steps of the robot. However, this planning method is not suitable for
the situation where the robot receives continuous walking footprints.

Nevertheless, after a certain amount of footprint information (i.e., ZMP) sequence
information is given, the centroid trajectory of the first few steps is approximately the
same. Therefore, the method used is to first generate a part of the CoM trajectory sequence
through the footprint generator but only use it to generate the relevant information of the
first single foot support phase trajectory and discard other data in the trajectory. After
actual simulation, considering the error of the trajectory and the computing power of the
corresponding controller, we found that in addition to the corresponding position of the
previous footprint, it is also necessary to generate the last four footprints for CoM
trajectory planning.

From CP theory, we know that the relationship between the CoM position, Capture
Point, and ZMP point can be expressed as

n
x

" #
¼

_n
_x

" #
¼ !x x

0 x

" #
n
x

" #
þ 0

!x

" #
p (9)

As we can see, (9) is a differential equation that is easy to solve. From (9), we can get

G2ðsÞ : xkþ1 ¼ e!xT xk ! nkð Þ þ nk
G1ðsÞ : nk ¼ e!xT nkþ1 ! pkð Þ þ pk

(10)

Now we can get the expression of the CP point and the center of mass trajectory of
the robot in the time domain. Therefore, as long as the initial value can be selected
appropriately, the trajectory of the center of mass of the robot can be obtained when the
robot is running. Since the speed of the center of mass of the robot is 0 when the robot
finally stops walking, the CP point and the position of the center of mass are also
coincident when it reaches that point, so it can be used as the corresponding recursive
boundary condition. Through the introduction in the previous article, we can obtain four
additional ZMP points that the robot is expected to pass. Therefore, we can obtain a
corresponding recurrence relationship as follows:

From Fig. 8, we can see that after the boundary conditions of the last step, the previous
CP point position and the position of the corresponding centroid can be cross-derived, as
shown in Fig. 8 so that the entire required trajectory information can be obtained.

Figure 8 CoM recursive path. Full-size DOI: 10.7717/peerj-cs.797/fig-8
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From Fig. 9, we can know the relationship between CP trajectory, CoM trajectory and
ZMP point in geometric space.

Variation of CoM height
As we can see in the Fig. 10 (Xie et al., 2016). By studying human motion data (Chen et al.,
2017;Miura et al., 2011), we found that the height of the center of mass of the human body
changes during walking. Therefore, for a robot to realize a human-like gait, the CoM
also needs to change z-direction. The change in the height of the robot’s center of mass can
also bring some practical uses. For example, it can reduce the robot’s power consumption
to a certain extent, and it can also increase the step strike when the robot is walking.
However, for the trajectory planning of CoM height, the previous theory requires it to
remain unchanged in the height direction. Nevertheless, we found that we can change the
center of mass of the robot through a certain pattern, and when the height of the center of
mass of the robot changes, we can regard the height of its center of mass as a kind of
linearity. The disturbance of the inverted pendulum model, in the following, we will first
analyze its impact on ZMP.

According to the derivation in the reference (Li et al., 2010), assuming that the height of
the center of mass of the robot changes during walking, the corresponding ZMP point
error and the center of mass motion trajectory of the corresponding robot will satisfy the
following relationship:

Figure 9 CP and CoM trajectory from ZMP. Full-size DOI: 10.7717/peerj-cs.797/fig-9

Figure 10 Pattern of human motion and posture in a typical walking cycle.
Full-size DOI: 10.7717/peerj-cs.797/fig-10
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ex ¼ xZMP ! x
0

ZMP ¼ €x
zc€z þ g zc ! zð Þ

gð€z þ gÞ
(11)

where x and z denote the 2D CoM’s position, and g be the gravitational constant
The value of €z and height z will affect the size of the ZMP error. Consider an

acceleration variation €z 2 ð!0:2; 0:2Þm=s2, a height variation z ∈ (0.39, 0.41)m and an
average horizontal acceleration €x ¼ 0:8 m=s2. From simulation, we can know the ZMP
error is relatively small. We can also analyze its impact on the trajectory of the center of
mass from another angle. It should be that we need to consider the acceleration in the
Z direction when setting the CP point parameters. Therefore, the following formulas can
be used to calculate the acceleration in the Z direction and without the Z direction
Centroid trajectory generated during acceleration. Due to the decoupling characteristics in
the X and Y directions, we use numerical calculations to analyze the influence of the
centroid trajectory in the Y direction by the acceleration of the centroid in the Z direction,
and its influence on the trajectory of the centroid in the Y direction is less than 5%.
It is considered that the influence of acceleration in the Z direction on the trajectory at this
time is significantly smaller. The value of €z and height z will affect the size of the ZMP
error. Consider an acceleration variation €z 2 ð!0:2; 0:2Þm=s2, a height variation z ∈(0.39,
0.41)m and an average horizontal acceleration €x ¼ 0:8 m=s2. From the simulation, we can
know that the ZMP error is relatively small. We can also analyze its impact on the
trajectory of the center of mass from another angle. We need to consider the acceleration
in the Z direction when setting the CP point parameters. Therefore, the following
formulas can be used to calculate the acceleration in the Z direction and without the Z
direction Centroid trajectory generated during acceleration. Due to the decoupling
characteristics in the X and Y directions, we use numerical calculations to analyze the
influence of the centroid trajectory in the Y direction by the acceleration of the centroid in
the Z direction and its influence on the trajectory of the centroid in the Y direction is less
than 5%. It is considered that the influence of acceleration in the Z direction on the
trajectory at this time is significantly smaller.

It can be seen from the analysis of the above two angles. From the perspective of
ZMP error, for the small acceleration of the center of mass of the robot in the Z direction,
the change in ZMP is small, and the foot length of the robot is 160 mm, which can tolerate
the ZMP error of the robot. From the point of view of CP generating CoM trajectory,
it has little effect on the generated horizontal centroid trajectory. Therefore, it is stable for
robot walking if we can design a trajectory that does not have too much displacement and
acceleration in the Z direction. The impact of stability is also limited.

From the analysis in the previous article, it can be seen that the primary influence on
the new walking stability of the robot is the acceleration of the robot’s center of mass in the
Z direction. Therefore, we need to design a trajectory with less acceleration in the Z
direction to avoid unstable walking.
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As show in Fig. 11 we will change the corresponding CoM in the Z direction to satisfy
the following expression:

Zcom ¼ Zc þ A !0:5 tanh 4
xcom ! xfootrear

xfootfront ! xfootrear
! 2

$ %
! 0:5

" #
(12)

where xfootrear is the position of rear foot. xfootfront is the position of front foot. Respectively,
zc is a constant hip height, and A is the amplitude of the specific pattern. A larger zc
means the robot’s knees will extend straighter while walking. The larger A means the hip
position will be lower while walking, so the knee singularities can be avoided. The
parameters zc and A can be changed to generate different walking patterns. We should not
let hip-height be a function of time as an independent variable because this will cause the
hip height to be discontinuous with respect to time, as the horizontal velocity _x is not
constant. But our method defines Zcom respect to xcom as in (12). The acceleration caused
by the hip motion is:

aðtÞ ¼ !
2ALstep

cosh2ð2þ 4bLstep ! 4LstepxcomÞ
_xcom (13)

Compared with the method in the reference (Li et al., 2010), on the one hand, we use a
variable height center of mass trajectory instead of the hip joint trajectory so that while
completing the human-like gait, it is more in line with the original gait assumptions.
At the same time, the center of mass is used. The planning method can also facilitate the
design of subsequent controllers. Another convenience is that we use the tanh function
instead of the trigonometric function, which is smoother than the trigonometric one.

The centroid trajectory of the robot generated by this generator has the following
characteristics:

1. This smooth trajectory reaches the lowest point during the bipedal support phase. This
feature allows the robot to have a longer walking step length in the actual walking
process. It can also complete the energy conversion through the change of the center of
mass to reduce the walking process—power consumption.

Figure 11 Hip pattern generator. Full-size DOI: 10.7717/peerj-cs.797/fig-11
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2. For continuous acceleration trajectories, the acceleration of the trajectory in the Z
direction can be controlled by a reasonable selection of relevant parameters in the
trajectory to ensure walking stability.

Foot motion generator
In order for the robot to achieve the human-like effect during the walking process, in
addition to planning the position trajectory of the foot end, we also need to plan the pitch
attitude angle of the foot end during the walking process. The attitude angle adopts
five-degree splines in the planning process. The trajectory is planned. The quintic spline
trajectory can satisfy the position, velocity, and acceleration information of the starting
point and the endpoint at the same time. Moreover, we can plan the trajectory by
appropriately selecting the quintic spline curve. First, we distinguish the walking process.
It is the bipedal support phase and the single-foot support phase. Separate the posture and
position of the foot for planning. Then in the toe-off process, the heel is raised first, in
which the posture of the foot determines the ankle trajectory. In the middle process,
the posture trajectory of the sole center is the planning target, and the posture of the
swinging foot is adjusted to prepare for landing. Then run to the planned landing
position in advance and run the corresponding heel-strike after detecting the foot landing.
We can define a quintic spline curve by (7) parameters f xinit; xend; _xinit; _xend; €xinit; €xend;Tð Þ
which contains the boundary conditions and spline time. The following table gives the
boundary conditions of each curve in the entire trajectory planning process as follows:

toe! off Phase : t 2 0;Ttoeoff
& '

Ttoeoff ¼ apitchTSSP þ bpitchTDSP

hfoot ¼ f 0; htoe; 0; 0; 0; 0;Ttoeoff
& '

xfoot ¼ Ltoe 1! cos hfoot
& '& '

zfoot ¼ Ltoe sin hfoot
& '

swing Phase : t 2 Ttoeoff ;Ttoeoff þ Theelstrike
& '

Theelstrike can be choosed by fsr sensorð Þ
hfoot ¼ f htoe; hhell; 0; 0; 0; 0;TSSPð Þ

xfoot ¼ f

 

Ltoe 1! cos htoeð Þð Þ; Lstride ! Lheel 1! cos hheelð Þð Þ;

Figure 12 Pattern of human motion and posture in a typical walking cycle.
Full-size DOI: 10.7717/peerj-cs.797/fig-12
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Ltoe sin htoeð Þhtoe
apitchTSSP

;
Lheel sin hheelð Þhheel
1! apitch
& '

TSSP
z; 0; 0

!

heel ! strike Phase :
hfoot ¼ f hhell; 0; 0; 0; 0; 0; 2aDSPTDSPð Þ
xfoot ¼ Lheel 1! cos hheelð Þð Þ
zfoot ¼ Lheel sin hheelð Þ

(14)

where αpitch αDSP and β are trajectory parameters which can define the detail motion of
foot.

Figure 12 show the whole curve of foot and some specific parameters in (14).

STABLIZER
Event based walking phase switcher
When the robot performs bipedal walking, the two legs alternately execute the trajectory of
the landing phase and air phases trajectory. Ideally, after the supporting leg finishes the
ground phase trajectory, it should immediately switch to the air phase trajectory. The
swing leg is the opposite. After executing the vacant phase trajectory, switch to the ground
phase trajectory immediately. Furthermore, the switching between the two should be
completed at the same instant. However, in the actual execution process, if the open-loop
control is adopted for the phase switching time, the actual switching timing of the two legs
always has a deviation before and after. The greater the deviation before and after the
switching timing, the greater the deviation caused by the center of mass trajectory, and
the more it affects gait execution. In order to improve this phenomenon, this article adopts
the method of installing pressure sensors on the soles of the feet to control the phase
switching time of the two legs to reduce the vertical movement of the torso and the impact

Figure 13 FSR installed on the robot. Full-size DOI: 10.7717/peerj-cs.797/fig-13
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of the swing leg when performing the planar biped gait. Ensure the smooth running of the
bipedal gait.

As shown in Fig. 13, a resistive film pressure sensor is installed on each of the four
corners of each foot. When the sole of the foot touches the ground, the sensor gives a
contact force signal. When the sensor detects that the contact force is greater than 1N, it is
considered that the pressure sensor has detected the ground signal. When the robot is
walking, the sole of the foot may not be completely flush with the horizontal surface when
touching the ground. Therefore, when the same sole of the foot is on the ground, the four
sensors on it may not detect the ground signal. Experiments have found that when
performing bipedal plane gait, the switching time is advanced, usually near the time point
of switching from the air phase trajectory to the ground phase trajectory. At least three
pressure points are detected for more than two consecutive seconds sampling periods.
When the ground is detected, it is considered that the leg has touched the ground.
Switch directly to the ground phase trajectory. For the case of switching time lag, it is
generally near the time point when the trajectory of the ground phase is switched to the
trajectory of the air phase. At this time, the grounding situation of the other leg should be
used as the basis for switching judgment. In order to ensure the regular switching of
the landing phase of the legs, the finite state machine needs to be used to control the
landing status of the legs so that it only jumps under several normal landing conditions,
thereby avoiding falling to the ground. The landing condition finite state machine is shown
in Fig. 14.

Among them, A represents the state switching route when the gait is running normally,
B represents the state switching route when the vacant leg advances or lags behind the
ground. C represents the state switching route adjusted by the program when the feet are
on the ground. The exact landing time and landing state of the robot can be obtained
through pressure sensitivity. This information can be used to adjust the gait parameters
in real-time to execute the planned trajectory, thereby avoiding the problem of
unsynchronized phase switching of the two feet landing on the ground during open-loop
control and can enhance walking stability.

Upper body feedback controller
In the previous section, we have analyzed the impact of the introduction of the human-like
gait planning framework on the robot’s stability when it is walking. During the robot’s
operation, we will find that the error in the operation of the robot’s joint unit and the

Figure 14 Walking phase state machine. Full-size DOI: 10.7717/peerj-cs.797/fig-14
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error in the mechanical structure of the robot itself will cause The actual ZMP point to
have a specific offset. In order to solve this problem, the solution of a scenario is to use the
ZMP control of the ankle joint, but the modular actuator used in the child-size robot
cannot directly control the force. Therefore, This paper proposes a method to achieve
force control under the constraints of using modular actuators. The principle of ankle joint
force control to compensate for the deviation of the ZMP point is relatively simple, which
can be deduced according to the relevant theory of LIPM:

€x ¼ g
zc
x þ 1

Mzc
s (15)

Moreover, we use the angular velocity of the torso to approximate the torso velocity, and
the torso velocity will cause changes in the angular momentum of the torso, which will
affect the ZMP point of the plantar. Therefore, we need to adjust the torque applied on the
ankle joint to avoid changing the plantar ZMP point. The problem causes instability.
However, we use a modular-based robot to drive the joints, so we cannot directly give
torque commands to the ankle joint. Nevertheless, through the analysis of the following
modular joint control framework, we can see that we can use some methods to give
position commands so that the ZMP point can be kept within a stable range. For the
control frame of the modular drive joint, it can be found that the current information is
given by the difference between the current position and the given position. Moreover,
before the controller is not attached, The given joint angle trajectory can be regarded as
continuous, and the joint tracking characteristics of the robot itself are good. We regard the
reference position and the actual position as approximately the same. We need to add a
different value to the original reference angle information for the ankle joint torque
command because this difference value will become an incremental current data after
passing through the position controller. To achieve the effect we need on the lower price
joint unit controller. The specific controller form is as follows:

hgoal ¼ href þ Kp ( _cbody (16)

where γbody is the angular speed of pitch of body. The parameter Kp need to be adjusted
carefully to avoid toe shaking during walking.

EXPERIMENTS
Simulations
Figure 15 shows the scene of the robot walking in the simulation environment. It can be
found that the robot can achieve Toe-off, heel-contact walking in the simulation
environment.

Figure 16 shows the trajectory of the knee joint angle when the robot is walking in the
simulation environment. Generally speaking, the change of the knee angle when a human
is walking is between 0–60 degrees. The minimum angle of the knee joint of the robot
running under the human-like walking frame we realized is about 20 degrees, and in order
to achieve a longer step length, the maximum angle is about 70 degrees.
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Figure 17 shows the height curve of the center of mass in the z direction when the
robot is walking in the simulation environment. It can be found that the height change of
the center of mass in the z direction is about 1.7 cm, and this change in the height of the
center of mass can make the robot’s new walk more huan-like effect.

We can evaluate the anthropomorphism of biped robot walking from the following
aspects: The first feature of human walking is to achieve a larger step length and thus have
a “single toe support stage”. From Fig. 15, we can It can be seen that our robot has the
above characteristics. Secondly, humans have a tendency to straighten their knees during
walking. It can be seen from Fig. 16 that the minimum bending angle of the robot knee in
the simulation environment can reach 20 degrees, while the minimum knee of the robot
using a standard gait algorithm The angle will basically be above 40 degrees. The third
aspect is that the height of the torso (center of mass) will change when humans walk,

Figure 15 Humanoid walk scene in V-rep. Full-size DOI: 10.7717/peerj-cs.797/fig-15
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thereby increasing the step length of a single step. From Fig. 17, we can find that our
method has this feature.

Real robot experiments
We have implemented the suggested walk controller on the Roban child-size humanoid
robot, which is 68 cm height, weights 6.5 kg. It has Core i3 processor for the onboard
processing, has various sensors including IMU, FSR on foot nd joint encoders at the joints
It can be seen from Fig. 18 that a real robot can achieve a better human-like walking effect
on flat ground.

We compared whether to use an event-based trajectory switching controller. From
Fig. 19, it can be found that if the controller we proposed before is not used, the running
time of each step of the robot is the same, but in the actual running process, the swing
phase will land in advance, which will affect the stability of the robot. However, the

Figure 16 Robot knee angle. Full-size DOI: 10.7717/peerj-cs.797/fig-16

Figure 17 CoM height. Full-size DOI: 10.7717/peerj-cs.797/fig-17
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controller we proposed can switch the working state of the state machine according to
the actual landing situation, thereby improving the walking effect of the robot.

We compared whether to use Upper Body Feedback Controller. From Fig. 20, it can be
found that the swing amplitude of the robot’s upper body is relatively large and

Figure 18 Humanoid walking in real scene. Full-size DOI: 10.7717/peerj-cs.797/fig-18

Figure 19 Phase switch in real scene. Full-size DOI: 10.7717/peerj-cs.797/fig-19

Figure 20 Robot’s pitch vibration in real scene. Full-size DOI: 10.7717/peerj-cs.797/fig-20
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inconsistent when the controller is not used. However, when the controller we proposed is
used, the swing of the robot torso in the pitch direction is small, and The amplitude is
consistent, which is conducive to the stability of walking.

CONCLUSIONS
In this paper, a human-like walking control framework based on DCM com planning is
proposed. By using capture point theory, we can get the com trajectory in the horizon
plane. By constructing a reasonable center of mass Z direction and foot end trajectory
generator, makes the walking step length of the robot lengthen (in this experiment, the
strike reaches 75% of the leg length). It can also make the knee joint of the robot closer
to the straight state so that the robot can be anthropomorphized during walking. At the
same time, to avoid the influence of our human-like gait planning method on the walking
stability of the robot itself, we designed an event-based trajectory switching controller
and a trunk stability controller to ensure the robot’s stability during walking. We also used
our method to conduct experiments on the dynamic simulation environment and
child-size actual robots. The simulation and physical robots both achieve relatively stable
walking on flat ground. The current control framework allows the robot to walk on flat
ground. In our subsequent research, we can consider modifying the current control
framework so that the robot can also walk on a human-like gait on uneven roads.
Additionally, the introduction of a human-like gait does not resolve the problem of
stability for the robot. The instability of the overall walking process is aggravated, and
the stability controller for the human-like gait could be further designed to improve the
stability of the robot’s walking gait.
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