SPECIAL ISSUE

Software Citation, Indexing, and
Discoverability

A Peerd Computer Science Special Issue investigating the
importance of - and best practice for - citing, indexing, and
discovering software used as a scholarly research tool.

: Softwareé®Ci

= {Daniel SW Katz, Neil Chue Hong},

LA A &
iz {Software is 1ncreas.u:lgly es Lo be Vi as both a tool to be recorded (for
reproducibility) and cited (fg e ! g = r 5 well as an output of research
that can be used, reused, ands ®8ads to challenges in how it
is cited, J_ndexed, and dJ.sc iddressing these challenges.},
= 4REtp://www.pe
3 {Recordlnq and tr slat -' i '
The generation and @t_um o : .
Understanding le of ﬂ nt1f1

Defining and analyzing the ndabls - Reusml mmples ful Tesearch

e s . Ll
ke of softwa tatiof and obs \ .'. 'l

Techniques andid ch software
i

softw
gg of 5ch013.'.l {da :Lbra:

, Microsoft
a,

N
5

Academi’Gr ph pplatf

Fagulty Opinions d iPotent ;
ole of I5€ ol H Schol iy
' 00ls and appEfaches y BS, sea -",=. q
} ’

challenges; to '“3'.-‘ Seopu f'
n

A Peer]/ Computer Science
Computer Science SpeCIal Issue

http://peerj.com/computer-science
http://peerj.com/computer-science
http://peerj.com/computer-science

Software Citation, Indexing, and

Discoverability

Editor Feature

Special Issue Editor

Daniel S. Katz

Chief Scientist, National Center
for Supercomputing
Applications,

University of Illinois at Urbana-
Champaign, USA

Special Issue Editor

Neil P Chue Hong

Director, Software
Sustainability Institute,
University of Edinburgh, UK.

Peer.

Computer Science

Dan Katz's interest is in the development and use
of advanced cyberinfrastructure to solve
challenging problems at multiple scales. His
technical research interests are in applications,
algorithms, fault tolerance, and programming in
parallel and distributed computing, including
HPC, Grid, Cloud, etc. He is also interested in
policy issues, including citation and credit
mechanisms and practices associated with
software and data, organization and community
practices for collaboration, and career paths for
computing researchers.

Neil Chue Hong is the founding Director and PI of
the Software Sustainability Institute, a collaboration
between the universities of Edinburgh, Manchester,
Oxford and Southampton. He enables research
software users and developers to drive the
continued improvement and impact of research
software. From 2007-2010, he was Director of OMII-
UK at the University of Southampton, which
provided and supported free, open-source software
for the UK e- Research community. In addition to
sitting on several project advisory committees, he is
the Editor-in-Chief of the Journal of Open Research
Software, chair of the Met Office / UKRI ExCALIBUR
Steering Committee, past chair of the EPSRC
Strategic Advisory Team on e-Infrastructure, co-
author of "Best Practices for Scientific Computing
and "An Open Science Peer Review Oath", and co-
organiser of the Software Engineering for Science
workshop series.

http://peerj.com/computer-science
http://peerj.com/computer-science
http://peerj.com/computer-science
http://peerj.com/computer-science

Software Citation, Indexing, and

PeerJ Discoverability

Computer Science

Special issue on software citation, indexing, and discoverability.
Daniel S. Katz, Neil P. Chue Hong. https://doi.org/10.7717/peerj-cs.1951

The role of software in science: a knowledge graph-based analysis of
software mentions in PubMed Central. David Schindler, Felix
Bensmann, Stefan Dietze, Frank Kriliger. https://doi.org/10.7717/peerj-
cs.835

Research artefacts and citations in computer systems papers. Eitan
Frachtenberg. https://doi.org/10.7717/peerj-cs.887

Understanding progress in software citation: a study of software
citation in the CORD-19 corpus. Caifan Du, Johanna Cohoon, Patrice
Lopez, James Howison. https://doi.org/10.7717/peerj-cs.1022

Nine best practices for research software registries and repositories.
Daniel Garijo, Hervé Ménager, Lorraine Hwang, Ana Trisovic, Michael
Hucka, Thomas Morrell, Alice Allen, Task Force on Best Practices for
Software Registries, SciCodes Consortium.
https://doi.org/10.7717/peerj-cs.1023

A survey of researchers’ code sharing and code reuse practices, and
assessment of interactive notebook prototypes. Lauren Cadwallader,
lain Hrynaszkiewicz. https://doi.org/10.7717 /peerj.13933

http://peerj.com/computer-science
https://doi.org/10.7717/peerj-cs.1951
https://doi.org/10.7717/peerj-cs.835
https://doi.org/10.7717/peerj-cs.835
https://doi.org/10.7717/peerj-cs.887
https://doi.org/10.7717/peerj-cs.1022
https://doi.org/10.7717/peerj-cs.1023
https://doi.org/10.7717/peerj.13933

Peer.

Submitted 29 February 2024
Accepted 29 February 2024
Published 26 March 2024

Corresponding author
Daniel S. Katz, d.katz@ieee.org

Article type
Editorial

Additional Information and
Declarations can be found on
page 5

DOI 10.7717/peerj-cs.1951

© Copyright
2024 Katz and Chue Hong

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Special issue on software citation,
indexing, and discoverability

Daniel S. Katz' and Neil P. Chue Hong*”

! National Center for Supercomputing Applications, Department of Computer Science,
Department of Electrical and Computer Engineering, School of Information Sciences, University
of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America

% Edinburgh Parallel Computing Centre, University of Edinburgh, Edinburgh, United Kingdom
* Software Sustainability Institute, University of Edinburgh, Edinburgh, United Kingdom

This Editorial article has not been externally peer reviewed

ABSTRACT

Software plays a fundamental role in research as a tool, an output, or even as an

object of study. This special issue on software citation, indexing, and discoverability
brings together five papers examining different aspects of how the use of software is
recorded and made available to others. It describes new work on datasets that enable
large-scale analysis of the evolution of software usage and citation, that presents

evidence of increased citation rates when software artifacts are released, that provides
guidance for registries and repositories to support software citation and findability,
and that shows there are still barriers to improving and formalising software citation
and publication practice. As the use of software increases further, driven by modern
research methods, addressing the barriers to software citation and discoverability will
encourage greater sharing and reuse of software, in turn enabling research progress.

Subjects Data Science, Digital Libraries, Emerging Technologies, Network Science and Online
Social Networks, Software Engineering
Keywords Software, Citation, Indexing, Discoverability, FAIR principles, Research software

INTRODUCTION

Software is increasingly essential to research. It can be viewed as both a tool to be recorded
(for reproducibility) and cited (for credit) as a part of scholarly research works, as well as
an output of research that can be used, reused, and further developed.

In 2021, Peer] Computer Science staff invited us to propose a special issue, and because
of our interest in the role of software in research, we chose to focus on Software Citation,
Indexing, and Discoverability. This choice was also partially based on our co-leadership of
the FORCEL11 Software Citation Implementation Working Group (2023), which followed
on a set of software citation principles published in 2016 (Smith, Katz ¢» Niemeyer, 2016),
working to move the community from having an idea of what could and should be done in
this area to actually having a culture of citing software. We were (and are) also pursuing
other activities both individually and collectively, generally aimed at increasing the
sustainability of research software, such as the Software Sustainability Institute (SSI)

How to cite this article Katz DS, Chue Hong NP. 2024. Special issue on software citation, indexing, and discoverability. Peer] Comput. Sci.
10:e1951 DOI 10.7717/peerj-cs.1951

http://dx.doi.org/10.7717/peerj-cs.1951
mailto:d.—katz@—ieee.—org
https://peerj.com/search/?type=articles&manuscriptType=editorial
http://dx.doi.org/10.7717/peerj-cs.1951
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

(Crouch et al., 2013) and the US Research Software Sustainability Institute (URSSI) (Carver
et al., 2018).

Ensuring that the use of software in research, particularly in publications, is effectively
understood and recorded leads to challenges in how it is cited, indexed, and discovered.
These include challenges relating to: software metadata; identifiers for software and their
relationship to those of other research objects, and other software; the role of other
stakeholders such as indexes, libraries and registries; fostering adoption; development of
related tools; and the role of the FAIR principles in this space. The special issue was
intended to focus on recent work addressing these challenges, particularly in the context of
the FORCE11 working group.

Between 2017 and 2023, the FORCE11 group published a set of software citation
implementation challenges (Katz et al., 2019), published checklists for (paper) authors
(Chue Hong et al., 2019b) and (software) developers (Chue Hong et al., 2019a), published
best practices for software repositories and registries (Task Force on Best Practices for
Software Registries et al., 2020), published guidance for journals (JATS4R, 2021; Katz et al.,
2021; Stall et al., 2023), and worked on metadata systems such as CodeMeta (Jones et al.,
2017) and CITATION.cff (Druskat et al., 2021).

Additional relevant work in this area includes: FAIR for Research Software (FAIR4RS),
which has created a new set of FAIR (findable, accessible, interoperable, and reusable)
principles specifically for research software (Chue Hong et al., 2022); the work of the RDA/
FORCE11 Software Source Code Identification working group to produce use cases for
persistent identifiers for software source code (Research Data Alliance/FORCEI1 Software
Source Code Identification WG et al., 2020); the European Open Science Cloud’s Task
Force report on Scholarly Infrastructures of Research Software (European Commission and
Directorate-General for Research and Innovation, 2020); NISO’s efforts to standardize
reproducibility badging, including metadata relevant for citation (NISO, 2021); and the
work of the Digital Preservation Coalition and Software Preservation Network on
motivations for preserving software (Morrissey, 2020).

The call for the special issue was issued in 2021, and in 2022, five papers successfully
passed through the peer review and publication process. The remainder of this editorial
discusses the papers and their potential impact, and where we think things are going next.

PAPERS AND IMPACT

The final special issue contains the following published articles:

o Schindler et al. (2022): “The role of software in science: a knowledge graph-based
analysis of software mentions in PubMed Central.” This work built a 300-million-triple
knowledge graph of 11.8 million software mentions and affiliated metadata generated
through supervised information extraction models that distinguish different types of
software and mentions, trained on a gold standard corpus, and applied to more than
three million scientific articles. It then used this graph to perform a large-scale analysis
of software usage and citation practices. The analysis provides insights into the evolution
of software usage and citation patterns across various fields, ranks of journals, and

Katz and Chue Hong (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1951 2/8

http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Computer Science

impact of publications. The authors publicly share all their data and models to facilitate
further research into scientific use and citation of software.

o Frachtenberg (2022): “Research artifacts and citations in computer systems papers.” This
paper studies the field of computer systems, which involves the engineering,
implementation, and measurement of complex systems software and data. In this field,
the reproducibility and replicability of research results depends on the availability of
artifact, because system software often embodies numerous implicit assumptions and
parameters that are not fully documented in articles. The work built a cross-sectional
dataset of papers from 56 contemporaneous systems conferences, including data on
conferences, papers, authors, citation counts, and the release, ongoing availability,
badges, and locations of associated research artifacts. This data showed that artifacts
were shared in 30% of all conference papers and 43% of papers in conferences that
actively evaluated artifact sharing, and that the papers with shared artifacts had 75%
more citations. Even after controlling for numerous confounding covariates, the release
of an artifact increased a paper’s citations by 34%.

e Du et al. (2022): “Understanding progress in software citation: a study of software
citation in the CORD-19 corpus.” This work investigated progress toward improved
software citation by examining current software citation practices. It used a machine-
learning-based data pipeline to extract software mentions from a collection of more than
280,000 scholarly articles on COVID-19 and related historical coronaviruses. The
authors then closely examined a sample of the extracted software mentions and searched
online for the mentioned software projects and their citation requests, in order to
understand the status of software citation. Positively, they found increasing mentions of
software versions, increasing open source practices, and improving software
accessibility. However, they also found high numbers of informal mentions that didn’t
credit software authors, as well as problems where software developers requested
citations that did not match software citation advocacy recommendations and that were
not followed by paper authors. Finally, they discussed implications for software citation
advocacy and standard making efforts seeking to improve the situation.

e Garijo et al. (2022): “Nine best practices for research software registries and
repositories.” Differing from the previous papers, this work was about the role of
registries and repositories that aim to include software in their contents. These systems
have a key role in supporting and improving software findability and research
transparency, providing information for software citations, and fostering preservation of
computational methods in a wide range of disciplines. However, developing them takes
effort and there are few guidelines available to help their creators and operators. To
address this need, the previously mentioned FORCEL11 Software Citation
Implementation Working Group (2023) convened a task force to distill the experiences of
the managers of existing resources in setting expectations for all stakeholders. This paper
described the resultant best practices, which include defining the scope, policies, and
rules that govern individual registries and repositories, along with the background,
examples, and collaborative work that went into their development. The paper’s authors

Katz and Chue Hong (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1951 3/8

http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Computer Science

believe that establishing specific policies such as those presented here will help other
scientific software registries and repositories better serve their users and their disciplines.

o Cadwallader & Hrynaszkiewicz (2022): “A survey of researchers’ code sharing and code
reuse practices, and assessment of interactive notebook prototypes.” While the first three
papers studied research works, and the fourth studied research repositories and
registries, this paper studied researchers themselves. It asked researchers in
computational biology about how often and why they look at code (most often, to gain a
better understanding of the article), which methods of accessing code they find useful
(most often, links to a code repository containing an archived version of the software)
and why, what aspects of code sharing are important to them (ensuring that the code
was running in the correct environment and sharing code with good documentation),
and how satisfied they are with their ability to complete these tasks (generally, they were
satisfied). The paper also asked researchers to examine a specific code-sharing tool that
would enable readers to easily run the code, and if they would be willing to spend more
time to use this tool. The average researcher was found to be unwilling to incur the
additional costs (in time, effort or expenditure) that are currently needed to use code
sharing tools alongside a publication. Based on this, the authors determined that
different models are needed for funding and producing interactive or executable
research outputs if they are to reach a large number of researchers.

These papers both create a set of work that can be further developed to better
understand software citation, indexing, and discovery, and also demonstrate factors that
should lead to increased understanding of the role of software in research and the
importance of the work of its developers and maintainers.

Schindler et al. (2022) helps us understand how software is used and cited through their
analysis of the published record as captured in PubMed Central, which can be considered a
baseline of data and tools that can be used to collect future data and understand future
changes as well.

Frachtenberg (2022) looks at artifacts, including software, and finds that their presence,
at least in computer systems conference papers, leads to increased citations of these papers,
which hopefully will lead to increased sharing of such artifacts in the future. Reuse of these
artifacts should lead to increased software sharing in this field, and better recognition of
software efforts.

Du et al. (2022) overlaps with Schindler et al. (2022) and Frachtenberg (2022) to some
extent, though using a somewhat different set of research papers. It also focused on formal
recommendations for citation, and how both software developers follow them as well as
how paper authors use the requests from software developers.

Garijo et al. (2022) discusses important practices for repositories and registries that store
or refer to software. Having a set of such practices leads to more better citations, indexing,
and discoverability of software as used in papers and other research works.

Cadwallader ¢» Hrynaszkiewicz (2022) helps us understand how researchers use code
associated with publications, how they share it statically today, and the difficulties in
sharing it more dynamically in the future.

Katz and Chue Hong (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1951 4/8

http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Computer Science

LOOKING FORWARD

The papers in this special issue clearly provide a snapshot of citation practices today, and
they define needs in the field and the research ecosystem, including for:

e Better and ongoing collection of data about software citation in publications. In
particular, we observe that two to three of the five papers took advantage of the fact that
a high fraction of the biomedical literature has been openly available via PubMed. This
leads to collected data that represents this field, but may not represent other fields as
well, if the fields and their practices differ. As open access publications become more
common across fields, we hope that other disciplines will become as well studied as
biomedicine, and that any disciplinary differences will become apparent so that they can
be addressed.

e Better communication about recommended software citation to software developers,
leading them to make citation requests that are more likely to be followed by paper
authors.

e Better citation practices by paper authors, perhaps following community/discipline-
specific guidelines. Note that very recent work by Ram ¢» Howison (2023) has found that
practitioners often understand how to cite software but have widespread uncertainty
about community norms on which software to cite, given the limited available space for
references in papers, so it seems likely that this need involves both the how discovered by
papers in this special issue as well as the which.

e More consistent use of best practices for registries and repositories that store or refer to
software.

e Policies and tools that are very low cost (in time and money) for researchers to use to
include their software in publications, if we want to move beyond links from
publications to static software in repositories, towards more interactive or reusable
forms.

The increasing use and ubiquity of software in research—now also driven by data
science, machine learning, and open research/open access—emphasises the importance of
software citation on transparency, reproducibility and reusability of research.

Addressing these needs both individually and collectively will lead to software that is
more frequently cited, indexed, and discovered, encouraging more software sharing and
reuse, and in turn leading to better and faster research progress.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Neil Chue Hong was supported by the UK Research Councils through grant EP/S021779/1.

Grant Disclosures
The following grant information was disclosed by the authors:
UK Research Councils through grant EP/S021779/1.

Katz and Chue Hong (2024), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.1951 5/8

http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Computer Science

Competing Interests
Daniel S. Katz and Neil Chue Hong are Academic Editors for Peer] Computer Science.
Daniel S. Katz is also a Section Editor.

Author Contributions

e Daniel S. Katz conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

e Neil P. Chue Hong conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
This is an Editorial.

REFERENCES

Cadwallader L, Hrynaszkiewicz I. 2022. A survey of researchers’ code sharing and code reuse
practices, and assessment of interactive notebook prototypes. Peer] 10(103):e13933
DOI 10.7717/peerj.13933.

Carver JC, Gesing S, Katz DS, Ram K, Weber N. 2018. Conceptualization of a US research
software sustainability institute (URSSI). Computing in Science ¢» Engineering 20(3):4-9
DOI 10.1109/MCSE.2018.03221924.

Chue Hong NP, Allen A, Gonzalez-Beltran, de Waard A, Smith AM, Robinson C, Jones C,
Bouquin D, Katz DS, Kennedy D, Ryder G, Hausman J, Hwang L, Jones MB, Harrison M,
Crosas M, Wu M, Lowe P, Haines R, Edmunds S, Stall S, Swaminathan S, Druskat S, Crick T,
Morrell T, Pollard T. 2019a. Software citation checklist for developers. Zenodo. Available at
https://doi.org/10.5281/zenodo.3482769.

Chue Hong NP, Allen A, Gonzalez-Beltran A, de Waard A, Smith AM, Robinson C, Jones C,
Bouquin D, Katz DS, Kennedy D, Ryder G, Hausman J, Hwang L, Jones MB, Harrison M,
Crosas M, Wu M, Lowe P, Haines R, Edmunds S, Stall S, Swaminathan S, Druskat S, Crick T,
Morrell T, Pollard T. 2019b. Software citation checklist for authors. Available at https://doi.org/
10.5281/zenodo.3479199.

Chue Hong NP, Katz DS, Barker M, Lamprecht A-L, Martinez C, Psomopoulos FE, Harrow J,
Castro L], Gruenpeter M, Martinez PA, Honeyman T, Struck A, Lee A, Loewe A, van
Werkhoven B, Jones C, Garijo D, Plomp E, Genova F, Shanahan H, Leng J, Hellstrom M,
Sandstrom M, Sinha M, Kuzak M, Herterich P, Zhang Q, Islam S, Sansone S-A, Pollard T,
Atmojo UD, Williams A, Czerniak A, Niehues A, Fouilloux AC, Desinghu B, Goble C,
Richard C, Gray C, Erdmann C, Nust D, Tartarini D, Ranguelova E, Anzt H, Todorov I,
McNally J, Moldon J, Burnett J, Garrido-Sanchez J, Belhajjame K, Sesink L, Hwang L,
Tovani-Palone MR, Wilkinson MD, Servillat M, Liffers M, Fox M, Miljkovic N, Lynch N,
Martinez Lavanchy P, Gesing S, Stevens S, Martinez Cuesta S, Peroni S, Soiland-Reyes S,
Bakker T, Rabemanantsoa T, Sochat V, Yehudi Y, RDA FAIR4RS WG. 2022. FAIR principles
for research software (FAIR4RS Principles). Zenodo. Available at https://doi.org/10.15497/
RDA00068.

Crouch S, Chue Hong N, Hettrick S, Jackson M, Pawlik A, Sufi S, Carr L, De Roure D, Goble C,
Parsons M. 2013. The software sustainability institute: changing research software attitudes and
practices. Computing in Science & Engineering 15(6):74-80 DOI 10.1109/MCSE.2013.133.

Katz and Chue Hong (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1951 6/8

http://dx.doi.org/10.7717/peerj.13933
http://dx.doi.org/10.1109/MCSE.2018.03221924
https://doi.org/10.5281/zenodo.3482769
https://doi.org/10.5281/zenodo.3479199
https://doi.org/10.5281/zenodo.3479199
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
http://dx.doi.org/10.1109/MCSE.2013.133
http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Computer Science

Druskat S, Spaaks JH, Chue Hong N, Haines R, Baker J, Bliven S, Willighagen E, Pérez-Suarez,
David, Konovalov O. 2021. Citation file format. Zenodo. Available at https://doi.org/10.5281/
zenodo.1003149.

Du C, Cohoon J, Lopez P, Howison J. 2022. Understanding progress in software citation: a study
of software citation in the cord-19 corpus. Peer] Computer Science 8(1):e1022
DOI 10.7717/peerj-cs.1022.

European Commission and Directorate-General for Research and Innovation. 2020. Scholarly
infrastructures for research software—report from the EOSC executive board working group (WG)
architecture task force (TF) SIRS. Brussels: Publications Office of the European Union. Available
at https://data.europa.eu/doi/10.2777/28598.

Frachtenberg E. 2022. Research artifacts and citations in computer systems papers. Peer] Computer
Science 8(7604):¢887 DOI 10.7717/peerj-cs.887.

Garijo D, Ménager Hé, Hwang L, Trisovic A, Hucka M, Morrell T, Allen A, Best Practices for
Software Registries TF, Consortium S. 2022. Nine best practices for research software
registries and repositories. Peer] Computer Science 8(1):e1023 DOI 10.7717/peerj-cs.1023.

JATS4R. 2021. NISO JATS4R software citations v1.0. Available at https://doi.org/10.3789/niso-rp-
40-2021.

Jones MB, Boettiger C, Cabunoc Mayes A, Smith A, Slaughter P, Niemeyer K, Gil Y, Fenner M,
Nowak K, Hahnel M, Coy L, Allen A, Crosas M, Sands A, Chue Hong N, Cruse P, Katz DS,
Goble C. 2017. CodeMeta: an exchange schema for software metadata. version 2.0. KNB data
repository. Available at https://doi.org/10.5063/schema/codemeta-2.0.

Katz DS, Bouquin D, Hong NPC, Hausman J, Jones C, Chivvis D, Clark T, Crosas M, Druskat
S, Fenner M, Gillespie T, Gonzalez-Beltran A, Gruenpeter M, Habermann T, Haines R,
Harrison M, Henneken E, Hwang L, Jones MB, Kelly AA, Kennedy DN, Leinweber K, Rios F,
Robinson CB, Todorov I, Wu M, Zhang Q. 2019. Software citation implementation challenges.
ArXiv DOI 1048550/arXiv.1905.08674.

Katz DS, Chue Hong NP, Clark T, Muench A, Stall S, Bouquin D, Cannon M, Edmunds S, Faez
T, Feeney P, Fenner M, Friedman M, Grenier G, Harrison M, Heber J, Leary A, MacCallum
C, Murray H, Pastrana E, Perry K, Schuster D, Stockhause M, Yeston J. 2021. Recognizing the
value of software: a software citation guide [version 2; peer review: 2 approved]. F1000Research
9:1257 DOI 10.12688/f1000research.26932.2.

Morrissey SM. 2020. Preserving software: motivations, challenges and approaches. Glasgow: Digital
Preservation Coalition.

NISO. 2021. Reproducibility badging and definitions. Available at https://doi.org/10.3789/niso-rp-
31-2021.

Ram DK, Howison DJ. 2023. Research software visibility infrastructure priorities report. Available
at https://doi.org/10.5281/zenodo.10060255.

Research Data Alliance/FORCE11 Software Source Code Identification WG, Allen A,
Bandrowski A, Chan P, Di Cosmo R, Fenner M, Garcia L, Gruenpeter M, Jones CM, Katz
DS, Kunze J, Schubotz M, Todorov IT. 2020. Use cases and identifier schemes for persistent
software source code identification (v1.0). Research Data Alliance 1-42
DOI 10.15497/RDA00053.

Schindler D, Bensmann F, Dietze S, Kruger F. 2022. The role of software in science: a knowledge
graph-based analysis of software mentions in PubMed Central. Peer] Computer Science 8(1):
€835 DOI 10.7717/peerj-cs.835.

Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working Group. 2016.
Software citation principles. Peer] Computer Science 2(2):e86 DOI 10.7717/peerj-cs.86.

Katz and Chue Hong (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1951 7/8

https://doi.org/10.5281/zenodo.1003149
https://doi.org/10.5281/zenodo.1003149
http://dx.doi.org/10.7717/peerj-cs.1022
https://data.europa.eu/doi/10.2777/28598
http://dx.doi.org/10.7717/peerj-cs.887
http://dx.doi.org/10.7717/peerj-cs.1023
https://doi.org/10.3789/niso-rp-40-2021
https://doi.org/10.3789/niso-rp-40-2021
https://doi.org/10.5063/schema/codemeta-2.0
http://dx.doi.org/10.48550/arXiv.1905.08674
http://dx.doi.org/10.12688/f1000research.26932.2
https://doi.org/10.3789/niso-rp-31-2021
https://doi.org/10.3789/niso-rp-31-2021
https://doi.org/10.5281/zenodo.10060255
http://dx.doi.org/10.15497/RDA00053
http://dx.doi.org/10.7717/peerj-cs.835
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Computer Science

Software Citation Implementation Working Group. 2023. FORCE11 software citation
implementation working group home page. GitHub. Available at https://github.com/forcell/
forcell-sciwg.

Stall S, Bilder G, Cannon M, Chue Hong N, Edmunds S, Erdmann CC, Evans M, Farmer R,
Feeney P, Friedman M, Giampoala M, Hanson RB, Harrison M, Karaiskos D, Katz DS,
Letizia V, Lizzi V, MacCallum C, Muench A, Perry K, Ratner H, Schindler U, Sedora B,
Stockhause M, Townsend R, Yeston J, Clark T. 2023. Journal production guidance for software
and data citations. Scientific Data 10(1):656 DOI 10.1038/s41597-023-02491-7.

Task Force on Best Practices for Software Registries, Monteil A, Gonzalez-Beltran A, Ioannidis
A, Allen A, Lee A, Bandrowski A, Wilson BE, Mecum B, Du CF, Robinson C, Garijo D, Katz
DS, Long D, Milliken G, Menager H, Hausman J, Spaaks JH, Fenlon K, Vanderbilt K, Hwang
L, Davis L, Fenner M, Crusoe MR, Hucka M, Wu M, Hong NC, Teuben P, Stall S, Druskat S,
Carnevale T, Morrell T. 2020. Nine best practices for research software registries and
repositories: a concise guide. ArXiv DOI 1048550/arXiv.2012.13117.

Katz and Chue Hong (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1951 8/8

https://github.com/force11/force11-sciwg
https://github.com/force11/force11-sciwg
http://dx.doi.org/10.1038/s41597-023-02491-7
http://dx.doi.org/10.48550/arXiv.2012.13117
http://dx.doi.org/10.7717/peerj-cs.1951
https://peerj.com/computer-science/

PeerJ Publishing

PeerJ is a modern and streamlined publisher, built for the internet age.
Our mission is to give researchers the publishing tools and services they
want, with a unique and exciting experience. All of our seven journals are
Gold Open Access and are widely read and cited, with over 500,000
monthly views and 48,500 content alert subscribers. We have published
over 19,000 peer-reviewed articles since 2013.

i, A O\ o r
m B @
i @ =) %
Prestigious High-Impact Quality Rapid Optimum
Editorial Board Research Peer Review Publishing Discoverability

PeerJ Computer Science

High-quality, developmental peer review, coupled with industry leading
customer service and an award-winning submission system, means PeerJ
Computer Science is the optimal choice for your computer science
research.

Impact Factor: 3.8 Scimago Ranking: 0.638
Citescore: 4.2 SNIP: 1.094

http://peerj.com/computer-science

Submitted 8 October 2021
Accepted 7 December 2021
Published 14 January 2022

Corresponding authors
David Schindler,
david.schindler@uni-rostock.de
Frank Kriiger,

frank krueger@uni-rostock.de

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 42

DOI 10.7717/peerj-cs.835

© Copyright
2022 Schindler et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The role of software in science: a
knowledge graph-based analysis of
software mentions in PubMed Central

David Schindler’, Felix Bensmann?, Stefan Dietze** and
Frank Kriiger"*
! Institute of Communications Engineering, University of Rostock, Rostock, Germany
2 GESIS - Leibniz Institute for the Social Sciences, Cologne, Germany

? Heinrich-Heine-University, Diisseldorf, Germany
4 Department Knowledge, Culture & Transformation, University of Rostock, Rostock, Germany

ABSTRACT

Science across all disciplines has become increasingly data-driven, leading to
additional needs with respect to software for collecting, processing and analysing
data. Thus, transparency about software used as part of the scientific process is
crucial to understand provenance of individual research data and insights, is a
prerequisite for reproducibility and can enable macro-analysis of the evolution of
scientific methods over time. However, missing rigor in software citation practices
renders the automated detection and disambiguation of software mentions a
challenging problem. In this work, we provide a large-scale analysis of software usage
and citation practices facilitated through an unprecedented knowledge graph of
software mentions and affiliated metadata generated through supervised information
extraction models trained on a unique gold standard corpus and applied to more than
3 million scientific articles. Our information extraction approach distinguishes
different types of software and mentions, disambiguates mentions and outperforms
the state-of-the-art significantly, leading to the most comprehensive corpus of 11.8 M
software mentions that are described through a knowledge graph consisting of more
than 300 M triples. Our analysis provides insights into the evolution of software
usage and citation patterns across various fields, ranks of journals, and impact of
publications. Whereas, to the best of our knowledge, this is the most comprehensive
analysis of software use and citation at the time, all data and models are shared
publicly to facilitate further research into scientific use and citation of software.

Subjects Data Mining and Machine Learning, Data Science, Digital Libraries, Natural Language
and Speech, World Wide Web and Web Science
Keywords Knowledge graph, Software mention, Named entity recognition, Software citation

INTRODUCTION

Science across all disciplines has become increasingly data-driven, leading to additional
needs with respect to software for collecting, processing and analyzing data. Hence,
transparency about software used as part of the scientific process is crucial to ensure
reproducibility and to understand provenance of individual research data and insights.
Knowledge about the particular version or software development state is a prerequisite for
reproducibility of scientific results as even minor changes to the software might impact
them significantly.

How to cite this article Schindler D, Bensmann F, Dietze S, Kriiger F. 2022. The role of software in science: a knowledge graph-based
analysis of software mentions in PubMed Central. Peer] Comput. Sci. 8:e835 DOI 10.7717/peerj-cs.835

http://dx.doi.org/10.7717/peerj-cs.835
mailto:david.—schindler@—uni-rostock.—de
mailto:frank.—krueger@—uni-rostock.—de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.835
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Develuper_nf-

Protein amounts were quantified from scanned blots using ImageJ (NTﬁ).
Versiow

We determined the evolutionary rate (dN/dS) using MEEEAG

Figure 1 Annotated sentences from SoMESci missing information required by software citation
standards. Full-size K&l DOT: 10.7717/peerj-cs.835/fig-1

Furthermore, from a macro-perspective, understanding software usage, varying citation
habits and their evolution over time within and across distinct disciplines can shape
the understanding of the evolution of scientific disciplines, the varying influence of
software on scientific impact and the emerging needs for computational support within
particular disciplines and fields. Initial efforts are made to provide publicly accessible
datasets that link open access articles to respective software that is used and cited, for
instance, the OpenAIRE Knowledge Graph (Manghi et al., 2019) or SoftwareKG
(Schindler, Zapilko ¢ Kriiger, 2020). Given the scale and heterogeneity of software
citations, robust automated methods are required, able to detect and disambiguate
mentions of software and related metadata.

Despite the existence of software citation principles (Smith, Katz ¢ Niemeyer, 2016;
Katz et al., 2021), software mentions in scientific articles are usually informal and often
incomplete—information about the developer or the version are often missing entirely,
see Fig. 1. Spelling variations and mistakes for software names, even common ones
(Schindler, Zapilko ¢ Kriiger, 2020), increase the complexity of automatic detection and
disambiguation. Training and evaluation of information extraction approaches requires
reliable ground truth data of sufficient size, raising the need for manually annotated gold
standard corpora of software mentions.

Most works concerned with recognition of software mentions in scientific articles apply
manual analysis on small corpora in order to answer specific questions (Howison ¢
Bullard, 2016; Nangia ¢» Katz, 2017) or are limited to specific software (Li, Lin ¢
Greenberg, 2016; Li, Yan & Feng, 2017). Automatic methods, enabling large scale analysis,
have been implemented by iterative bootstrapping (Pan et al., 2015) as well as machine
learning on manually engineered rules (Duck et al., 2016). However, both achieve only
moderate performance. Extraction through deep learning with a Bi-LSTM-CREF (Schindler,
Zapilko & Kriiger, 2020) shows promise, but requires sufficient and reliable ground truth
data which only recently became available.

Available corpora (Duck et al., 2016; Schindler, Zapilko & Kriiger, 2020; Du et al., 2021)
do not cover all available metadata features, cater for disambiguation of different spelling
variations of the same software or distinguish between the purpose of the mention such
as creation or usage. In SOMESci (Schindler et al., 2021b), we have introduced a gold
standard knowledge graph of software mentions in scientific articles. To the best of our

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 2/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-1
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

knowledge, SOMESct is the most comprehensive gold standard corpus of software mentions
in scientific articles, created by manually annotating 3,756 software mentions with
additional information about types of software, mentions and related features, resulting in
7,237 labeled entities in 47,524 sentences from 1,367 PMC articles.

In this work, we provide a large-scale analysis of software usage and citation practices
facilitated through an unprecedented knowledge graph of software mentions and affiliated
metadata generated through a supervised information extraction model trained on
SoMEScr and applied to more than 3 million scientific articles. In summary, our
contributions include:

o A large-scale analysis of software usage across 3,215,386 scholarly publications
covering a range of diverse fields and providing unprecedented insights into the
evolution of software usage and citation patterns across various domains, distinguishing
between different types of software, mentions as well as rank of journals and impact of
publications. Results indicate strongly discipline-specific usage of software and an
overall increase in software adoption. To the best of our knowledge, this is the most
comprehensive analysis of software use and citation at the time.

o A comprehensive knowledge graph of software citations in scholarly publications
comprising of 301,825,757 triples describing 11.8 M software mentions together with
types and additional metadata. The knowledge graph is represented using established
vocabularies capturing the relations between citation contexts, disambiguated software
mentions and related metadata and provides a unique resource for further research
into software use and citation pattern.

e Robust supervised information extraction models for disambiguating software
mentions and related knowledge in scholarly publications. As part of our experimental
evaluation, our model based on SciBERT and trained on SOMESci1 Schindler et al. (2021b)
for NER and classification outperforms state-of-the-art methods for software extraction
by 5 pp on average. Software mentions are disambiguated and different variations
interlinked, e.g., abbreviations and name- and spelling-alternatives, of the same
software.

Through these contributions, we advance the understanding of software use and
citation practices across various fields and provide a significant foundation for further
large-scale analysis through an unprecedented dataset as well as robust information
extraction models.

The remaining paper is organized as follows. Related work is discussed in the following
section, whereas the Methods and Materials introduces developed information
extraction methods together with datasets used for training and testing. Results:
Information Extraction Performance describes the performance results obtained on the
various information extraction tasks, while the Results: Analysis of Software Mentions
introduces an in-depth analysis of the extracted data. Key findings are discussed in the
Discussion, followed by a brief conclusion and introduction of future work.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 3/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Summary of investigations concerning software in science together with source of the
articles, number of articles and software, and a quality indicator. Level of extracted details varies
between listed approaches. Note that PLoS is a subset of PMC. M, manual; A, automatic; k, Cohen’s; F,
FScore; O, Percentage Overlap.

Approach Quality Source Articles Software
M Howison ¢ Bullard (2016) 0O =0.68-0.83 Biology 90 286
Nangia & Katz (2017) - Nature (Journal) 40 211
Du et al. (2021) 0=0.76 PMC, Economics 4,971 4,093
Schindler et al. (2021b) k=0.82,F=093 PMC 1,367 3,756
A Pan et al. (2015) F=10.58 PLoS ONE 10 K 26 K
Duck et al. (2016) F=0.67 PMC 714 K 39M
Schindler, Zapilko & Kriiger (2020) F =0.82 PLoS (Social Science) 51 K 133 K
RELATED WORK

Requirements for large scale software citation analyses

Software mentions in scientific articles have been analyzed for several reasons including
mapping the landscape of available scientific software, analyses of software citation
practices and measuring the impact of software in science (Kriiger ¢ Schindler, 2020). This
includes manual analyses based on high quality data, such as Howison ¢ Bullard (2016),
Du et al. (2021), Nangia & Katz (2017) and Schindler et al. (2021b) but also automatic
analyses such as Pan et al. (2015), Duck et al. (2016) and Schindler, Zapilko ¢ Kriiger
(2020). While manual analyses provide highly reliable data, results often only provide a
small excerpt and do not generalize due to small sample size. Analyses based on automatic
data processing, in contrast, allow to make more general statements, for instance,
regarding trends over time or across disciplines, but require high quality information
extraction methods which themselves rely on reliable ground truth labels for supervised
training. Table 1 compares manual and automatic approaches with respect to sample
size and quality indicators such as IRR or FScore. Manual approaches provide
substantial to almost perfect IRR, but are restricted to less than 5,000 articles at most.
Howison ¢ Bullard (2016), for instance, analyzed software mentions in science by
content analysis in 90 articles. The main objective of Du et al. (2021) and Schindler et al.
(2021b) was to create annotated corpora of high quality for supervised learning of
software mentions in scientific articles. Du et al. (2021) provide labels for software,
version, developer, and URL for articles from PMC, which is multidisciplinary but
strongly skewed towards Medicine (see Table A11) and Economics. Schindler et al.
(2021b) exclusively used articles from PMC, and provide labels for software, a broad
range of associated information, software type, mention type, and for disambiguation of
software names.

Early automatic approaches, such as Pan et al. (2015) and Duck et al. (2016) achieve only
moderate recognition performance of 0.58 and 0.67 FScore, but perform analyses on up to
714 K articles raising doubts about the reliability and generalizability of the described
results. Pan et al. (2015) used iterative bootstrapping—a rule-based method that learns
context rules—as well as a dictionary of software names based on an initial set of seed

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 4/47

http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

names. Duck et al. (2016) employ machine learning classifiers on top of manually
engineered rules. With the availability of large language models and deep learning methods
for sequence labeling, Schindler, Zapilko ¢ Kriiger (2020) employed a Bi-LSTM-CRF
and achieved an FScore of 0.82 for the recognition of software mentions in scientific
articles. Most recently, Lopez et al. (2021) compare Bi-LSTM-CRF and SciBERT-CRF
models on Softcite (Du et al., 2021) software entity recognition at paragraph level. They
achieve 0.66 and 0.71 FScore, respectively, and further improved performance to 0.74
FScore by linking entities to Wikidata during postprocessing.

Beside high recognition rates, and thus the basis for reliable statements, Schindler,
Zapilko & Kriiger (2020) demonstrate the capabilities of semantic web technologies for
information structuring and data integration with respect to analyzing software usage.
They provide a KG—SoftwareKG—representing a source for structured data access for
analyses. Moreover, the performed disambiguation of software mentions allows to draw
conclusion on the level of software rather than software mentions, even with spelling
variations. Finally, the linked nature of KG allows the integration of external data sources
enabling further analyses. Following the direction of Schindler, Zapilko ¢ Kriiger (2020),
large scale analyses of software mentions in scholarly articles requires (1) robust
information extraction and disambiguation techniques that achieve results on the level of
manual approaches, and (2) the provision of all data in a standardized way that allows the
reuse and the integration of external knowledge.

Previous analyses of software in scholarly publication

As described above, previous studies on software mentions in scholarly publication
were based on high quality manual analyses with small sample sizes or automatic analyses
with large sample size but moderate quality. Most studies report basic descriptive statistics
such as the number of overall mentions given in Table 1 or the distribution of software
mentions over different software. Howison ¢ Bullard (2016) report an average of 3.2
software mentions per article in Biology while Duck et al. (2016) report 12.9. In PMC, Duck
et al. (2016) report an average of 5.5 mentions while Du ef al. (2021) report 1.4 and
Schindler et al. (2021b) 2.6. Similarly, Pan et al. (2015) and Schindler, Zapilko ¢ Kriiger
(2020) report values of 2.7 and 2.6 for sub-selections of PLoS. Interestingly, Du et al. (2021)
report a low value of 0.2 for Economics and Duck et al. (2016) a high value of 30.8 for
Bioinformatics. Some of those results clearly show disciplinary differences, while others
such as the PMC discrepancies might be attributed to methodical differences, for instance,
publication time of articles in the investigated sets. Articles within Du ef al. (2021) are
significantly older than articles in Schindler et al. (2021b) which could result in a lower
average software usage. This is also supported by the finding of Duck et al. (2016) who
analyze software mentions up to 2013 and report a rapid increase in software usage
between 2000 and 2006.

Other findings regard the distribution with respect to unique software names. Pan et al.
(2015) report that 20% of software names account for 80% of mentions. Duck et al. (2016)
report that 5% of software names account for 47% of mentions, and, similarly, 6.6% of
entities are responsible for 50% of mentions in Schindler et al. (2021b). Therefore, all prior

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 5/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

studies agree that the distribution of software within articles is highly skewed, pointing
towards the fact that there are few pieces of general purpose software such as SPSS or R
that support the scientific infrastructure. On the other hand, there is a high number of
rarely mentioned software that is likely to be highly specialized towards problems and
domains. Duck et al. (2016) perform an analysis of domain specific software to investigate
disciplinary differences in software usage. They were able to confirm the existence of
domain specific software and showed, for instance, that 65% of software used in medicine
was not used in other analyzed domains. They also analyze journal specific software and
applied a clustering analysis with respect to journal and software names.

Completeness of software mentions and citations is of high importance since
employed software can only be clearly identified with sufficient information. Providing
information such as the specific version or developer of software is, therefore, essential for
provenance of study results or to provide credit for the creation of scientific software.
For this purpose, guidelines for proper software citation have been established (Smith, Katz
¢» Niemeyer, 2016; Katz et al., 2021) that recommend the following information to be
included: name, author, version/release/date, location, venue, and unique ID, e.g., DOL.
Howison ¢ Bullard (2016) analyze the completeness of software mentions with respect to
formal citation 44%, version 28%, developer 18% and URL 5%. Based on the given
information they were able to locate 86% of software online, but only 5% with the specific
version. Completeness analyses by Du ef al. (2021) showed that a total of only 44% of
software mentions include further information with version being included in 27%,
publisher in 31%, and URL in 17%. An analysis by Schindler et al. (2021b) showed that 39%
mentions included a version, 23% a developer, 4% a URL and 16% a formal citation.
Opverall, the studies show that software mentions are still often informal and incomplete,
but exhibit some notable differences between reported values. The problem of formal
and informal software citation was also included in the automatic analysis of Pan ef al.
(2015) who identified formal citations for recognized software by automatic string pattern
matching. They report a correlation between the number of mentions of a software and its
formal citation frequency.

Availability of used software is crucial as studies conducted with commercial software
might not be reproducible by other research teams. Furthermore, implementation details
for non open source software cannot be reviewed by the scientific community and can
potentially bias study results. Therefore, different studies included analyses regarding
commercial, free and open source software usage. Pan et al. (2015) found that of the
most frequent software mentions, which were labeled for availability manually, 64% are
free for academic use. Moreover, they found that free software received more formal
citations than commercial software. Howison ¢ Bullard (2016) include an analysis for
accessibility, license and source code availability and report that commercial software is
more likely to be mentioned similar to scientific instruments (including details on
developer and its location) while open access software is more often attributed with formal
citations. However, they note that there is no overall preferred style for any group of
software. Schindler, Zapilko ¢» Kriiger (2020) show a comparison of software mention

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 6/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

numbers for free, open source and commercial software over time that showed no clear
trend towards a specific group.

Beside analyses about software in scholarly publications in general, several studies
focus on particular aspects such as specific software or the relation of software usage to
bibliometric measures. Li, Lin ¢ Greenberg (2016), analyze mentions of the specific
engineering software (LAMMPS) and found that the given information is often not
complete enough to determine how it was applied with respect to version, but also
regarding software specific settings. Li, Yan ¢» Feng (2017) analyze software citation for
R and R packages. They report inconsistency resulting from a variety in citation standards,
which are also not followed well by authors. Overall, they show a trend towards more
package mentions, and find a comparably high number of formal citations for R packages
(72%). Mayernik et al. (2017) discuss data and software citation and conclude that there is
no impact measure for software available. Allen, Teuben ¢ Ryan (2018) analyse the
availability of source code in astrophysics and report that it could only be located for 58%
of all mentions. Pan et al. (2018) analyze the completeness for usage statements of
three specific bibliometric mapping tools and find provided versions in 30% of cases, URLs
in 24%, and formal citations in 76%. They argue that the high formal citation might be due
to good author citation instruction given by the tools. Howison ¢ Bullard (2016) report
that articles published in high impact journals mention more software. The platform
sWMATH (Greuel ¢» Sperber, 2014) aims to establish a mapping of software used in
mathematical literature by manually labeling software present in zbMATH articles
pre-filtered through an automatic, heuristic search.

Most studies agree that software citation is important but often incomplete and
report similar trends about the frequency of software mentions. They deviate, however,
when it comes to particular numbers such as software mentions per article. This could
be the result of (1) discipline specific citation habits, (2) small sample sizes in analysis
studies, and (3) insufficient quality of automatic information extraction. A large scale study
based on reliable automatic information extraction is required to draw conclusions across
different disciplines.

METHODS AND MATERIALS

Information extraction

Training dataset

We apply automatic information extraction based on supervised machine learning for
recognizing software in science and use SOMESci—Software Mentions in Science—a corpus
of annotated software mentions in scientific articles (Schindler et al., 2021b). It contains
3,756 software annotations in 1,367 PubMed Central (PMC) articles as well as annotations
for different software types such as Programming Environment or Plug-In, mention types
such as Usage or Creation, and additional information such as Version or Developer.
Moreover, it provides unique entity identities for all software annotations, which allows to
not only develop a system for software name recognition but also for disambiguating

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 7/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

The protein-protein interaction networks were further separated into different clusters and biological significance of these clusters were

Plugln_of
i B/—Plus,»]n_ar \
[Pitigin Usage! "*™*"-°" GRS (Pligin Usage! - HEEEH B
depicted using clusterMaker w18 and BINGO v.2.44 cytoscape plugins, respectively.

Figure 2 Sentence from SoMEeSci annotated with respect to software, additional information,
mention type, and software type as well as corresponding relations.
Full-size K&l DOT: 10.7717/peerj-cs.835/fig-2

Table 2 Overview of the SOMESc1 corpus. Further details can be found in Schindler et al. (2021b).

SoMESar statistics

Articles 1,367
Sentences w/ Software 2,728

Sentences w/o Software 44,796

Annotations 7,237

Software 3,756

unique Software 883

Relations 3,776

Software Type Application, Plugln, Operating System (OS), Programming Environment (PE)
Mention Type Allusion, Usage, Creation, Deposition

Additional Information Developer, Version, URL, Citation, Extension, Release, License, Abbreviation,
Alternative Name

names, an essential inference step in building a software Knowledge Graph. This level of
detail is not represented in other available software datasets such as BioNerDs (Duck et al.,
2016) or Softcite (Du et al., 2021). SOMEScrI does also contain recent articles and is,
therefore, suited to represent the recent shift in awareness and recommendations for
software citation. Quality of SOMEScI annotations was assessed through IRR and is
reported to be high with a value of x = 0.82. SoMEtScI is available from Zenodo (https://doi.
org/10.5281/zenodo0.4968738) and an annotated example with markup from the web-
based annotation tool BRAT (Stenetorp et al., 2012) is given in Fig. 2. For all reported
information extraction problems described below we use the same 60:20:20 division in
train, development, and test set as the SOMEScr baseline.

An overview of the different annotations along with the overall statistics of the SOMESct
dataset is given in Table 2. SoMEtSct distinguishes each mention of a software by two types:
mention and software. Mention type can take the values of Usage if the software was
actively used and is contributing to the articles results, Creation if it was created in the
scope of the article, Deposition if it was created and additionally published, and Allusion
if its name was merely stated, e.g., in an comparison with another software. Similarly,
software type is distinguished between, Application if the software can be run as a stand-
alone software, Plugln if it is an extension to an existing host software, Operating System
and Programming Environment if it is a framework for writing and executing program
code. More details on the different types and relations are provided in the Taxonomy for
Software and Related Information.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 8/47

https://doi.org/10.5281/zenodo.4968738
https://doi.org/10.5281/zenodo.4968738
http://dx.doi.org/10.7717/peerj-cs.835/fig-2
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Inference dataset

The inference dataset includes 3,215,386 articles indexed in PMC acquired via bulk
download (https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/). on January 22, 2021.
Construction of SoftwareKG requires metadata and plain text of each article. To acquire
the information, JATS was used instead of the also available Portable Document

Format (PDF). PDF is the standard form in which humans consume scientific articles,
however, there are drawbacks for machines due to formatting artifacts caused by elements
such as headers, footers, page numbering, or multi-column formats. While some tools,
such as GROBID (2021), perform well on pdf to text conversion, using JATS prevents
errors resulting from text formatting. JATS on the other hand is an XML-based format,
and while specific tagging conventions vary between different journals indexed in PMC,
they all follow a common scheme, making it a suited source for both metadata and
plain text. Both were extracted using a custom implementation available in the associated
source code (https://github.com/dave-s477/SoftwareKG).

Entity recognition and classification

The objective of this information extraction step is to recognize software mentions and
associated additional information, and to classify software according to its Software Type
and Mention Type. The target labels are summarized in Table 2. The task is modelled

as an NER sequence tagging problem where each sentence is considered as a sequence of
tokens each of which has to be assigned a correct output tag.

Different suited state-of-the-art machine learning models are considered for the task.
We compare the given baseline results on SoOMEtSct Schindler et al. (2021b), which were
established by an un-optimized Bi-LSTM-CRF model, to other machine learning models
suited for scientific literature, for instance, SCiBERT (Beltagy, Lo ¢ Cohan, 2019). To
establish a consistent naming scheme we label all implemented and tested models by type,
classification target and optimization state: My,pe sarget,optimization- Results for NER are
reported by mean and standard deviation for repeated training runs because performance
can vary between runs due to randomization in initialization and training. Results of at
least 4 different training runs are provided for hyper-parameter optimization and 16 for
final performance estimation. The best model is selected on the problem of identifying
software mentions (M_,,) as we consider it the most important quality measure and the
main problem all other tasks relate to.

Bi-LSTM-CRFs (M} ;,,) were selected as they are well established for NER and have
been reported to achieve state-of-the-art results (Ma & Hovy, 2016). Further, they have
previously been applied to the problem of recognizing software in scientific literature
(Schindler, Zapilko & Kriiger, 2020; Schindler et al., 2021b; Lopez et al., 2021). More details
on the model can be found in Ma & Hovy (2016), Schindler, Zapilko & Kriiger (2020) as
well as in the implementation details in our published code.

BERT (Devlin et al., 2019) is a transformer-based model that is pre-trained on a masked
language prediction task and has proven to achieve state-of-the-art performance across a
wide range of NLP problems after fine-tuning. Different adaptions of the BERT
pre-training procedure exist for scientific literature resulting in the two well established

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 9/47

https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
https://github.com/dave-s477/SoftwareKG
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Hyper-parameters considered for BERT models including their default setting.

Parameter Default
Learning Rate (LR) le-5
Sampling all data
Dropout 0.1
Gradient Clipping 1.0

models BioBERT (Lee et al., 2019) (Mpp,,-) and SciBERT (Beltagy, Lo ¢ Cohan, 2019)
(Msgsw,—). While BioBERT is pre-trained on PubMed abstracts as well as PMC full-texts
SciBERT is pre-trained on full-text articles from semantic scholar with 18% of articles
coming from the domain of Computer Science and the remaining 82% from Biomedicine.
To reduce run-time requirements, hyper-parameter optimization was only performed for
the best performing BERT model that was chosen by comparing both models after fine-
tuning with the default configuration summarized in Table 3. The parameter Sampling
reduces the size of the training set by randomly suppressing sentences from the training
corpus that do not contain software.

The overall, best model based on the development set is selected and extended to solve
the 3 main objectives (M_ ,,inf,-) Of the initial information extraction step: (1) recognize
software mentions and corresponding additional information, (2) classify software type,
(3) classify mention type of extracted software mentions. The combined problem is
modeled as hierarchical multi-task sequence labeling and illustrated in Fig. 3. Multi-task
learning can improve recognition performance and help to learn better representations
if the given tasks are related as it implicitly increases the sample size (Ruder, 2017).
Therefore, the main layers of the model share their weights across all sub-tasks
and are updated with loss signals from all individual tasks. The output of each sub-task
is calculated by a separate fully connected layer with softmax activation. For
backpropagation we chose the simple approach of summing over the three cross-entropy
losses, however, this could be further explored in the future, for instance, as described by
Kendall, Gal & Cipolla (2018).

The hierarchical component is added by passing the classification result of lower
hierarchy sub-tasks as input to higher sub-tasks. The classification layer for mention type
receives the output of software recognition and the software type layer the output of
both software recognition and mention type. There is no gradient passed backward
through the hierarchy so the weight updates in each classification layer are only based on
the individual task loss. Teacher forcing—passing the correct prediction regardless of
the actual prediction—is performed during training with respect to the output of lower
layers in the hierarchy. As a result, we expect better update steps and faster learning
convergence by providing more gold label information to higher classification layers.
Additionally, teacher forcing should motivate the constraint that a software type or
mention type should only be classified if a software was classified before. Note, that
hyper-parameters for the M_ ,,..iufo,0p¢ are based on the best set of parameters identified for
software recognition M_,,, o

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 10/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Entity Recognition Mention Type Software Type

‘ Softmax ‘
%
‘ Fully connected ‘ ‘ Fully connected ‘ ‘ Fully connected ‘

L t

dsuBERT
E } d=0sciserT*Nrecog
f T

Shared Layers M. ino.ont)

ﬁ ﬁ E ﬁ lﬁ| no gradient — teacher forcing during training
use

with gradient
Shared Layers

7y
d=dscigerT+Nrecog Nintype

Figure 3 Illustration of the employed multi-task, hierarchical, sequence labeling model. Features are
generated based on shared layers. The features are passed to 3 separate tasks and loss signals are summed to
update shared weights. Outputs of classification layers are passed back to the network as input features to
other classification layers, depicted from left to right in the image. Teacher forcing—replacing lower level
classification outputs with gold label data—is used during training to stop potentially wrong classification
outputs from being passed to other classification layers. Colors represent similar types of information.
Full-size Kal DOL: 10.7717/peerj-cs.835/fig-3

Table 4 Example for enforcing tagging consistency. Inconsistencies are underlined.

Sentence We Used SPSS Statistics 16

Entities 0o 0o B-App I-App I-Ver o
Types (0] (0] B-Use I-Mention (0] O
Fixed (@) (@) B-App-Use B-App-Use B-Ver o

As labels for multiple tasks have to be combined with potential tagging inconsistencies
for each task we experimented with adding a CRF layer on top of BERT to improve
performance by learning inter-dependencies and constraints between labels. We found no
improvement in performance but additional time complexity and did not further
pursue the model. Instead, we enforce tagging consistencies by applying a simple set of
rules: (1) all I-tags without leading B-tags are transformed to B-tags—including I-tags that
do not match their leading B-tags; (2) entity boundaries for higher hierarchy tasks are
adjusted to the base task entity boundaries; (3) when there are multiple conflicting labels in
higher hierarchy steps for one identified software entity, the label for the first token is
chosen. An example is given in Table 4.

The performance of M_ g, .info,0p: is evaluated against the SOMEScr baseline (Schindler
et al., 2021b) described above. In contrast to our implementation, information is not
shared between tasks in the baseline model. Instead, all classifications are performed
hierarchically and individually. Therefore, the reported results for the baseline are

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 11/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-3
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

subject to error propagation as recognition of additional information, software type
classification and mention type classification all assume an underlying perfect software
recognition. As our implementation does take error propagation into account the SOMEScr
baseline overestimates performance in a direct comparison.

Relation extraction

For Relation Extraction (RE), the task of classifying if and which relationships exist
between entities, we considered all relations available from the training dataset. All
additional information can be related to software, versions and developers to licenses, and
URLs to licenses or developers. Software mentions can be related to each other by the
plugin-of relation, representing one mention as the host software and the other as the
Plugln, or by the specification-of relation if both mentions refer to the same real world
entity. Some possible relations are also depicted in Fig. 2. Its important to note that RE is
the second information extraction step and, therefore, directly dependent on entity
extraction. For developing and testing RE we rely on gold level entities, but in practice RE
performance is expected to be lower due to false negatives and false positives resulting
from entity extraction errors.

SoMeSct (Schindler et al., 2021b) provides a baseline model for classifying relations
between software associated entities based on manually engineered features and an
optimized Random Forest classifier. All features are implemented to yield Integer or
Boolean results and take into account (1) entity order, (2) entity types, (3) entity length,
(4) entity distance, (5) number of software entities, (6) sub-string relations, and
(7) automatically generated acronyms.

We chose to adapt and enhance the SOMEScr baseline model instead of using more
complex deep learning models because the baseline achieved good results. Moreover, RE
for software associated entities is less challenging as general RE problems as we impose a
large number of constraints on how entities can be related. To improve the given rule
set we individually fine-tuned the implementation of each rule. Moreover, we
experimented with multi-layer perceptrons and SVMs as alternative to the Random Forest
classifier. In initial tests, they did not achieve better performance and we chose to retain
the Random Forest classifier as it has the benefit of offering better explainability. The
Random Forest was trained with 100 trees, unlimited maximum depth, and no restrictions
to splitting samples.

Software disambiguation

Software is referred to by different names due to abbreviations, geographical differences, or
time. Schindler, Zapilko ¢ Kriiger (2020), for instance, report up to 179 different spelling
variations for the commonly used software SPSS. This raises the need for software

name disambiguation as a core requirement for constructing SoftwareKG. SoMESc1
provides a gold standard for this problem through manually assigned unique identifiers in
form of links to external knowledge bases. However, existing knowledge bases, such as
Wikidata (Vrandeci¢, 2012) or DBpedia (Auer et al., 2007), are sparse when it comes to

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 12/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

[oNelNe)

len()=ns*(ns-1)/2 >t

Entity E. feature extraction 3 E H
' E |][Cluster Pairs |
SZ\?joper: IBM SUOSIVaN ~~— perceptron Ll - E I
Version: 16 N L] threshold t
B ==
rt
Entity E S]
SPSS Statistics Context Similarity —»ﬁ % E
Developer: SPSS Inc. / O O
UL None [omesn 5 B
: edia Va—
URL: None P!] 0
L [l
o | O
° 0 O
O O

o

Figure 4 Overview of the software name disambiguation. For all pairs of extracted software entities

(E;> E,), features are extracted (feature extraction) and used to determine a probability of linking

(perceptron). Finally, agglomerative clustering is performed to cluster similar software names.
Full-size K&l DOT: 10.7717/peerj-cs.835/fig-4

scientific software which is illustrated by an analysis of the SOMESc disambiguation
ground truth: only 205 of 883 (23%) unique and 2,228 of 3,717 (60%) software mentions
are represented in Wikidata. Therefore, we adapt and develop an entity disambiguation
method able to handle previously unknown software names such as those from creation
statements without the need to link to external knowledge bases. In consequence, we
contribute to establish a more complete KG of software.

The objective of software entity disambiguation is as follows: Given a pair (E;, E,) of
software entities the goal is to determine whether they refer to the same real world
entity. For that purpose we employ agglomerative clustering following the procedure
illustrated in Fig. 4. First, manually engineered features are calculated for each pair,
resulting in a feature vector vg, ,. Features take into account: (1) string similarity,

(2) similarity of extracted context information, (3) automatically generated abbreviations,
and (4) software related information queried from DBpedia.

For each pair (Ej,E,), vector Vg g, is mapped to a probability estimate py;,x for if
they should be linked by a 4-layer perceptron (15 x 10 x 5 x 1) with low complexity
Piink = fperceptron (VE1,E2)- The model is trained supervised to predict if a link exist [= {0,1}
based on splitting all possible combinations from the ground truth set in train,
development and test set in a 60:20:20 ratio. Since the class was trained as a binary
classification the output of the perceptron is the result of a sigmoid layer d € [0,1] and is
used in combination with a threshold in the following steps. We considered applying
dropouts but found a decreasing performance in initial tests. We also did not find any
increase in performance for increasing model complexity.

For disambiguation we have to consider the influence of the sample size on the
density of samples in the resulting features space. For n extracted mentions of software the
number of entity pairs that need to be disambiguated accumulates to n> — n. In the
small training set data points are less dense than in the large inference set. Moreover, the
inference set does contain false positive mentions with strong resemblance to software
resulting from prediction errors in the entity extraction step. This makes it difficult to find
reliable decision boundaries on the training set alone. During testing it became apparent
that due to the described effect the perceptron trained only on gold standard labels

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 13/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-4
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

could not learn suited decision boundaries to disambiguate entities pairs in the inference
set. To counteract this problem, data augmentation was applied to add further entities
resembling false positive extracted software names, which should not be linked to any
other mentions. To simulate closeness to existing software names the new samples were
generated by recombining sub-strings of existing samples, for instance, Image] and SPSS
Statistics could be combined to form Image Statistics. During creation we made sure to
not re-create given software names as well as duplicates. In total, 2n augmented samples
were created once for the n original software mentions and included at each training
epoch. They were also included in the test set with the same factor in order to estimate
performance under the chance of false positive samples. As we only add negative samples
to the test set there is no risk to overestimate the performance with the employed metrics of
Precision and Recall.

Based on the predicted probabilities pj;,x for entity pairs a agglomerative clustering is
performed. In each step, the two clusters with the largest probability are combined. As
stopping criterion the threshold ¢ is introduced and defined as the minimal probability for
which pairs are linked. It is optimized based on the available gold standard labels. Here, the
creation of reliable decision boundaries within the densely populated feature space is
also an issue. To counteract it the threshold is optimized taking into account all available
data points from gold standard and inference set by combining both sets. This approach
allows to evaluate how well the gold labeled mentions are clustered within the densely
populated feature space. The performance is estimated in terms of Precision, Recall and
FScore at ¢.

We considered single and average linkage for clustering and found almost identical
performance for varying thresholds based on gold standard mentions only. Given the
similar performance during the initial tests, single linkage was preferred as it offers benefits
in run-time and space complexity because it allows to re-use the initially calculated
similarities. Average linking, in contrast, would require additional computation for the
per-cluster-pair average similarity. Due to the run-time issues described below an
evaluation of average linkage would not have been feasible with the evaluation method
described above. Single linkage was then applied and evaluated as described.

A major issue we faced for disambiguation was run-time complexity as the number of
pairs accumulates to n? — n with n > 11M software mentions. Therefore, we had to
optimize for run-time complexity. Our initial optimization step was to assume symmetric

feature vectors between entities E; and E, Vg; g = Vi g1 reducing the number of required

n(n—1)
2

are included as normalization factors. Further, we made the assumption that all software

compares to , even so they are not strictly symmetric because string length of entities
with the same exact string refers to the same real-world software entity and only included a
limited number of 7,4, = 6 samples of each name. The work of Schindler et al. (2021b)
showed that this can in rare cases lead to false positive clustering, but in this case the
benefit outweighs this risk because otherwise the computation would not have been
feasible. Disambiguation on the remaining set of ~1.4 M mentions took approximately
6 days, with feature calculations parallelized over 6 Intel® Xeon® Gold 6248 CPUs

(2.50 GHz, 40 Threads).

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 14/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Schindler et al. (2021b) provide a baseline implementation for entity disambiguation
on SoMEScr which uses manually engineered rules and external knowledge from DBpedia
to disambiguate software names. For completeness we provide baseline results, however, as
explained above, the density of the features space increases strongly by including
additional data samples and our evaluation specifically includes augmented negative
samples. Thus, the baseline cannot directly be compared to the implemented method in
terms of disambiguation quality, but serves as an indicator.

SoftwareKG: knowledge graph of software mentions

Taxonomy for software and related information

We define software and its related information following the taxonomy presented by
Schindler et al. (2021b) that describes the intricacies of in-text software mentions in
scientific publications. The taxonomy distinguishes Type of Software describing which
artifacts are considered as software, Type of Mention describing the context in which
software was applied, and Additional Information that is provided to closer describe a
software entity.

Type of software

Based on the distinction between end-user application (software) and package introduced
by Li, Yan & Feng (2017), Schindler et al. (2021b) distinguish the following categories of
software:

Applications are standalone programs, designed for end-users, that usually result in
associated data or project files, e.g., Excel sheets. This definition includes software
applications that are only hosted and available through web-based services, but excludes
web-based collections of data. The definition also excludes databases that are used to store
collections of scientific data. To be considered as an application a web-service has to
provide functionality beyond filtered access to data.

Programming Environments (PE) are environments for implementing and executing
computer programs or scripts. They are built around programming languages such as
Python but also integrate compilers or interpreters in order to create executables from
developed code. PEs play an important role in many scientific investigations and are
particularly important for computationally heavy scientific disciplines such as computer
science.

Pluglns are extensions specifically developed to be used with existing applications or
PEs and cannot be used individually. As such, in the context of PEs, the category
Plugln could also be called package or library. Often, the original application can be
concluded from the Plugln, e.g., scikit-learn is a frequently used Python package for
machine learning. The usage of Plugins is well established in the scientific community as it
allows to extend the function range of well established software libraries. This allows to
implement custom software without the need to establish more complex stand-alone
application.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 15/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Operating Systems (OS) build the basis for running software on a computer by
managing its hardware components and the execution of all other software. OS are
necessary when running a software application and they are, overall, less mentioned than
other software. In many cases authors still choose to attribute common operating systems
such as Windows, OS X, or Android as well as lesser used ones such as Ubuntu or
Raspbian.

Type of mention

The definition of Schindler et al. (2021b) introduces a hierarchy of reasons why software is
mentioned within scholarly articles based on the basic distinction between mention and
usage introduced by Howison ¢ Bullard (2016):

Allusion of software describes each mention of a software name within a scholarly
article. Aside appearance of the software name there are no further requirement for an
allusion. It should especially be noted that no indication of actual usage is required, for
instance, a fact about the software can be stated or multiple software can be compared. In
the context of software mentions, allusions are comparable with scholarly citations used to
refer to related work.

Usage (sub-type of Allusion) defines that a software made a contribution to a study and
was actively used during the investigation, which makes the software a part of the
research’s provenance. Therefore, usage statements are required to allow conclusions
regarding provenance. This is in line with the definition of software usage by Lopez et al.
(2021).

Creation (sub-type of Allusion) indicates that software was developed and implemented
as part of a scientific investigation and is itself a research contribution. Knowledge of
creation statements allows to track research software to its developers in order to provide
credit to them as well as to discover and map newly published scientific software.

Deposition (sub-type of Creation) indicates that a software was published in the scope of
a scientific investigation on top of being developed. In difference to creation statements,
depositions require that authors provide either a URL to access the software or the
corresponding publication license. Deposition statements, therefore, allow to provide
additional information about discovered scientific software.

Both Type of Software and Type of Mention are required to fully describe a software
mention in a scientific publication.

Additional Information and Declarations

Software is constantly updated and changing. Moreover, software names are ambiguous
(Schindler, Zapilko ¢ Kriiger, 2020). Therefore, software citation principles (Smith, Katz ¢
Niemeyer, 2016; Katz et al., 2021) have been established to precisely identify software

in publications. They require that software mentions in scholarly articles are accompanied
by additional information allowing the unique identification of the actually used
software, information that is often missing in practice (Howison ¢» Bullard, 2016; Du et al.,
20215 Schindler et al., 2021b). Here we employ the following definitions for additional
information about software as defined by Schindler et al. (2021b). Developer describes the

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 16/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

skos:ConceptScheme schema:developer skg:Plugin
irao:Software dct:version schema:Organization xsd:float
skos:hasTopConcept +++ +++
y "
rdf:predicate rdf:object
shasiCie rdf:subject skg:confidence
skg:software rdf:Statement
bibo:Journal
4 skg:referredToByPlugin
dct:isPartOf q " i
. skg:Programming Environment
skg:softwareType | skg:OperatingSystem
)) schema:mentions nif:String skg:Pluglin
schema:ScholarlyArticle (Software mention) skg:Application
bibo: http://purl.org/ontology/bibo/ skg:MentionType_Usage
det: hr::D /ﬁuf'-olfg/ddt‘:fms/l a0l skg:MentionType_Creation
irao: tp://ontology.ethereal.cz/iraol n N : - i
nif: f A uni-leipzig it corett skg:mentionType g Skg.Mem!onType_Depqsmon
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns# skg:MentionType_Allusion
skg: http:/data.gesis.org/softwarekg/vocab/
skos: http:/iww.w3.0rg/2004/02/skos/core#
schema: http://schema.org/
xsd: http://www.w3.0rg/2001/XMLSchema#
skg:referredToBy skg:referred ToBY| skg:referredToBy skg:referredToBy
AlternativeName License Abbreviation Developer ¢
! 1 e R e g
! <more> i ‘ nif:String ‘ ‘ nif:String ‘ ‘ nif:String ‘ ‘ nif:String ‘

skg:informationTypel

skg:informationTypel

skg:informationTypel

skg:informationType|

I
! <more> i ‘skg:AItemaliveName‘ ‘ skg:License ‘ ‘ skg:Abbreviation ‘ ‘ skg:Developer ‘

Figure 5 Data model of the Knowledge Graph representing extracted software mentions and their
related information. For reasons of conciseness some details are left out.
Full-size K&] DOT: 10.7717/peerj-cs.835/fig-5

person or organization that developed a software while Version indicates a defined state in
the software life-cycle, typically identified by a version number, Release indicates a defined
state in the software life-cycle by using a date based identifier, and Extension indicates
different function ranges for the same base software such as professional and basic
versions. URL gives a location for further information and download, Citation provides a
formal, bibliographic citation, and License covers the permission and terms of usage.
Lastly, Abbreviation gives a shortened name for a software while Alternative Name
provides a longer name. All additional information is related to the specific entity it
describes. In most cases this is a software, but licenses can also be specified by versions,
URLs and abbreviations, while developers can be closer described by URLs and
abbreviations.

Data Model and RDF/S lifting

In order to ensure interpretability and reusability, extracted data is lifted into a structured
KG based on established vocabularies. KGs represent a meaningful way to semantically
structure information in an unambiguous way and provide a reasonable approach to make
data accessible for later reuse. In particular, KGs enable the FAIR publication of research
data.

The data model of the KG is depicted in Fig. 5. It can be subdivided into different areas
that represent different types of information. Bibliographic information about articles,
journal and authors (depicted in violet color) is represented by employing terms from the
Bibliographic Ontology (BIBO) (D’Arcus ¢ Giasson, 2009), Dublin Core Metadata
Initiative Terms (DCT) (DCMI Usage Board, 2020), Simple Knowledge Organization
System (SKOS) (Miles et al., 2005), and schema.org (Guha, Brickley ¢» Macbeth, 2016).

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835

17/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-5
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

The representation of entity mentions that were automatically extracted from the texts
(orange color), is mainly built upon the NLP Interchange Format (NIF) (Hellmann et al.,
2013) and Datacite (Peroni et al., 2016). Disambiguated software are represented by
Software from Informatics Research Artifacts Ontology (IRAO) (Bach, 2021). For the
metadata of software we examined dedicated vocabularies and ontologies including DOAP
(Description of a Project) (Wilder-James, 2018), SDO (Software Description Ontology)
(Garijo et al., 2019), SWO (Software Ontology) (Malone et al., 2014), OS (OntoSoft)
(Gil, Ratnakar ¢ Garijo, 2015), and Codemeta (Jones et al., 2017) (including their
crosswalk), but did not use those terms as they do not represent the textual information
but the real entities. For clear separation of fact and prediction we opted to not create
entities from our mentions but model the mentions as they are and provide information
inferred on top of them in the form of reification statements (green color). Whenever we
were not able to identify existing vocabularies that allow the representation, we introduced
new terms under the prefix skg (http://data.gesis.org/softwarekg/vocab/). This was
necessary for modelling the information, mention and software types.

Articles and mentions are central entities of the KG. Mentions of all pieces of
information extracted from an article (schema:ScholarlyArticle) such as software, version
or developer are represented by nif:String. Software mentions are assigned a software
type (skg:softwareType) and a mention type (skg:mentionType, yellow). For all other
mentions the type is noted using the skg:informationType property (yellow). To represent
relations at the textual level, we introduced predicates for each possible relation. The
mention of a software, for instance, refers to the corresponding version via skg:
referredToByVersion.

In order to indicate different degrees of probabilities for information aggregated over
disambiguated software entities we use reification statements (rdf:Statement) instead of
domain entities. Confidence values based on the frequency within and across articles
are used to provide a measure of certainty. Formally, let I, , be the set of all forms of a
piece of information for a given relation r and software x. Further, let D be the set of all
articles and m,., , the mapping of a piece of information a € I, , to x under the relation r,
we then define the confidence score c,, as given in:

1 d
CMr,a.x = |{mr3a7x 6 }| a= b.

{d € Dimypx € d,b € L} 42> ey, Hmrpx €d}]”

a = b signals that both, a and b represent the same type of information, e.g., name or
developer. This way we achieve a ratio based fair weighting on mention level and on
document level. All values range from 0 to 1 and also add up to 1.

Additional information sources

SoftwareKG was build upon data from PMC making use of the PMC OA JATS XML data
set as structured information source for article metadata. Data from PubMedKG (Xu et al.,
2020) was integrated to allow bibliometric and domain specific analyses. In particular, we
used PKG2020S4 (1781-Dec. 2020), Version 4 available from http://er.tacc.utexas.edu/
datasets/ped. It includes Scimago data on journal H-index, journal rank, best quartiles as

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 18/47

http://data.gesis.org/softwarekg/vocab/
http://er.tacc.utexas.edu/datasets/ped
http://er.tacc.utexas.edu/datasets/ped
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Development set results on software mention recognition. Models marked with opt were
optimized with respect to hyper-parameters, models marked with plain were not. Bold results highlight
best performance for both plain and optimized models.

Precision Recall FScore

Model compare (n = 499)
SoMEScr1 Baseline 0.82 0.77 0.79
My sw,opt 0.829 (£0.016) 0.762 (£0.011) 0.794 (£0.004)
M, plain 0.862 (£0.005) 0.808 (+£0.011) 0.834 (£0.006)
Mg, sw,plain 0.863 (+0.016) 0.844 (+0.009) 0.853 (+0.003)
Mg, sw,opt 0.868 (+0.006) 0.865 (+£0.012) 0.866 (+0.008)

well as their domains and publishers. Moreover, it includes citation information for articles
in PubMed from PubMed itself and Web of Science. For integration of PubMedKG we
matched PMC identifiers to PubMed identifiers based on PMC’s mapping service,
available at https://www.ncbinlm.nih.gov/pmc/pmctopmid/. Specifically, we used their
CSV table to match the PMC-ID in PubMed Central with PM-ID from PubMedKG.

Journal specific information vary over time so we modelled them in an skg:Journallnfo-
entity that encapsulates information per year. Citation data are integrated in two ways:
(1) all citations between PMC Open Access articles are inserted as schema:citation in
the KG and (2) the overall number of citations an article received is included as a citation
count. This allows analyses based on citation counts, but also provides a basis to identify
particular citations paths.

RESULTS: INFORMATION EXTRACTION PERFORMANCE

Entity recognition and classification

Performance for software recognition on development set, used to select the best model, is
summarized in Table 5. All values are provided by mean and standard deviation for
repeated training to assess the effect of randomization in the training process of deep
learning models. We found that both BERT based models perform better than M ,, o, in
both Precision and Recall. As described above, Mg s, plain and Mpp g, plain Were initially
compared with the same set of default hyper-parameters and only the best of the two
models was optimized. In the initial comparison, Mgg gy, piain sShowed better performance
than Mpg g, piain With respect to Recall and was therefore selected. We found that hyper-
parameter optimization for Mgp ., piain improved performance further, especially in
terms of Recall. A detailed overview of all performed hyper-parameter tests for the
Bi-LSTM-CRF (M| ;,,-) is given in supplementary Tables A1-A6 and for SciBERT

(Mgp sw,-) in supplementary Tables A7-A10. The chosen hyper-parameter configuration
for Mg s,0pt is summarized in Table 6. It outperforms baseline by 7 pp on the
development set and is selected as the best model for the task.

The test set performance of Mg gy info,0p: ON all classification tasks is summarized and
compared to the baseline in Table 7. Software extraction and overall entity recognition
perform well with respective FScores of 0.883 (+0.005) and 0.885 (+0.005). The entity
types Extension, Release, and AlternativeName, for which the fewest data samples are

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 19/47

https://www.ncbi.nlm.nih.gov/pmc/pmctopmid/
http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Selected hyper-parameters for Mgp q,0p: fine-tuning.

Parameter Value
Learning Rate (LR) le-6
Sampling all data
Dropout 0.2
Gradient clipping 1.0

Table 7 Software mention extraction results for Mgp q,,.info,0pe in comparison with SOMEeScr baseline
as reported by Schindler et al. (2021b), where n denotes the number of samples available for each
classification target. Please note that the baseline model applies hierarchical classifiers on the task
and does not adjust the performance for error propagation between the initial classification of software
and all other down-stream tasks. Therefore, all baseline results except for software are prone to
overestimate performance when compared to the given results. Bold results highlight best performance in

terms of FScore.

MSB,sw+info,opt

SoMEScr baseline

Precision Recall FScore FScore n
Software 0.876 (+£0.011) 0.891 (+£0.009) 0.883 (+0.005) 0.83 590
Abbreviation 0.884 (+£0.046) 0.879 (+£0.025) 0.881 (+£0.029) 0.71 17
AlternativeName 0.719 (£0.09) 0.734 (+£0.061) 0.726 (+0.075) 0.25 4
Citation 0.868 (£0.018) 0.855 (+0.027) 0.861 (£0.015) 0.87 120
Developer 0.867 (+£0.025) 0.901 (+£0.029) 0.883 (+0.023) 0.88 110
Extension 0.331 (+£0.045) 0.688 (£0.099) 0.444 (+0.053) 0.60 5
License 0.799 (+£0.056) 0.83 (+0.061) 0.814 (+£0.057) 0.80 14
Release 0.499 (+£0.049) 0.771 (£0.027) 0.605 (+0.042) 0.82 9
URL 0.858 (+£0.028) 0.979 (+£0.006) 0.914 (+0.016) 0.95 53
Version 0.927 (+£0.014) 0.94 (+0.006) 0.934 (+0.008) 0.92 190
Entities 0.875 (+£0.009) 0.897 (+0.009) 0.885 (+0.005) 0.85 1,112
Application 0.788 (£0.012) 0.865 (+£0.014) 0.824 (+0.007) 0.81 415
oS 0.933 (+£0.036) 0.852 (+0.023) 0.89 (+0.023) 0.82 30
Plugln 0.652 (+0.05) 0.408 (+£0.029) 0.5 (+0.023) 0.43 78
PE 0.924 (+£0.014) 0.998 (£0.005) 0.96 (+0.009) 0.99 63
Software Type 0.792 (£0.010) 0.818 (+0.01) 0.800 (+0.008) 0.78 590
Creation 0.784 (+£0.043) 0.805 (+£0.024) 0.794 (+0.029) 0.64 53
Deposition 0.71 (+0.058) 0.821 (+0.018) 0.761 (+0.036) 0.65 28
Allusion 0.603 (+£0.058) 0.464 (+0.046) 0.522 (+0.038) 0.29 71
Usage 0.832 (+0.013) 0.883 (+0.011) 0.857 (+£0.007) 0.80 438
Mention Type 0.794 (+£0.016) 0.823 (£0.01) 0.806 (+0.01) 0.74 590

available, show a lower performance compared to the other entities. Software types are
recognized with a good overall performance of 0.800 (+0.008). Especially the types
Programming Environment and Operating System are recognized with high performance.
The software type Application is also recognized well, but PlugIn shows a lower
performance of 0.5 (£0.023). Mention type classification also performs well with 0.806

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 20/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 Summary of RE results for both development and test set. SOMEScI represents baseline
FScores for comparison. P, Precision; R, Recall; F1, FScore; n, Number of samples per relation. Bold
results highlight best performance in terms of FScore.

Development set Test set

Random forest SoMEScr Random forest SoMESct
Label P R F1 F1 n P R F1 F1 n
Abbreviation 1.00 1.00 1.00 1.00 17 1.00 0.94 0.97 0.97 17
Developer 0.94 0.97 0.95 0.95 87 0.95 0.95 0.95 0.94 111
AltName 1.00 1.00 1.00 0.83 6 1.00 1.00 1.00 1.00 4
License 0.88 0.70 0.78 057 10 1.00 0.93 096 064 14
Citation 0.94 0.97 0.95 0.83 90 0.94 0.92 0.93 0.86 121
Release 0.78 1.00 0.88 0.80 7 0.88 0.78 0.82 0.53 9
URL 0.93 0.94 0.94 0.80 70 0.98 0.92 0.95 0.89 53
Version 0.97 0.99 098 096 139 0.98 0.96 097 095 190
Extension 1.00 1.00 1.00 1.00 5 1.00 1.00 1.00 0.89 5
Plugln 0.77 0.66 0.71 0.60 35 0.85 0.72 0.78 0.65 39
Specification 0.67 0.67 0.67 0.60 6 0.83 0.62 0.71 0.22 8
Overall 0.93 0.94 093 087 472 095 0.92 094 088 571

(+0.01). Here, mention type Allusion is the most challenging target with 0.522 (+0.038)
FScore, while all other targets are extracted with a satisfactory performance.

Relation extraction

The results for RE by the Random Forest as well as the original SOMEScr baseline on both,
development set and test set are given and compared in Table 8. In summary, high
recognition rates with 0.94 FScore are observed, showing improvements resulting from our
extension and optimization to the baseline. At the level of the individual relation types,
high FScores (>0.9) are observed for all types except for Release F1 = 0.82, PlugIn F1 =0.78,
and Specification F1 = 0.71. This indicates that relations between two software entities,
i.e., Plugln and Specification, are particularly challenging classification targets.

Software disambiguation
As described above, the disambiguation first uses a perceptron model to estimate linking
probabilities between entity pairs and afterwards uses the probabilities for agglomerative
clustering. The optimized perceptron predicted links between software entities with a
Precision 0.96, Recall 0.90, and FScore 0.93. These values were estimated on the test dataset
with a threshold of t = 0.5 based on the sigmoid output. The perceptron performance
does influence the final performance, but during clustering entity pairs pj;,x(E4,Ec) < t can
still be linked even if they have not been predicted by the perceptron through a chain of
closer entities: pyk(EsEp) > t, pink(Ep.Ec) > t. Therefore, evaluation of the perceptron
alone does not allow to make statements about disambiguation quality.

For the actual agglomerative clustering based on single linkage performance was
estimated with a Precision of 0.99, Recall of 0.96, and FScore of 0.97 at a optimal threshold
of t = 0.00347 for clustering all gold label data in a common features space with all

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 21/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

extracted data. The SOMESct1 baseline results are reported with Precision of 0.99, Recall of
0.96 and FScore of 0.97, but as noted above they cannot be compared to the results
reported here. The small threshold is a clear indicator of how densely populated the feature
space is considering all extracted software mentions. In total 605.364 clusters of software
were generated.

RESULTS: ANALYSIS OF SOFTWARE MENTIONS

KG statistics

The KG was constructed from 301,825,757 subject-predicate-object triples, representing
11.8 M software mentions in more than 3.2 M articles in 15,338 journals from 2,136
publishers. On average, each journal contains 210 articles, ranging from 1 article to
239,962 articles in the journal PLoS One.

For ~8.7 K journals (containing 2.8 M articles, 86.7%) additional information, including
citations, research domain and journal ranks was identified from integrating data of
PubMedKG (Xu et al., 2020). For almost 2.5 M articles a citation count different from
0 could be found. In summary, 303 categories from 27 top level domains were found, see
Table 9.

A detailed overview of article and journal frequencies per research domain is provided
in supplementary Table A11. As expected from a repository of Open Access articles
from Biomedicine and Life Sciences, the distribution of journals and articles is skewed
towards Medicine, as ~1.9 M articles from 4,455 journals are related to Medicine, while
only 2,178 articles from 181 journals are related to Economics. However, there is a
high relative amount of articles not directly related to medicine (more than 30%). This
includes disciplines such as Computer Science (~77 K articles from 396 journals) and
Mathematics (~39 K articles 364 journals), but also Business (~3 K articles from
173 journals) and Arts and Humanities (~9 K articles from 469 journals).

Software mentions
Different spellings of the same software were grouped during disambiguation, resulting in
605,362 unique software instances with 1.08 different spellings and 19.48 mentions on
average. A highly skewed distribution of mentions per software can be observed, where
about 10% of the software account for about 90% of the software mentions across all
articles. Figure 6 illustrates this distribution graphically. Table 10 provides an overview
of the 10 most frequent software, including their absolute and relative number of mentions
across all articles. Furthermore, the number of articles containing at least one mention
of the respective software is given in the column # Articles. With 539,250 respectively
469,751 mentions, SPSS and R are mentioned most frequently across all articles, where 440
different spellings were observed for SPSS and only 1 for R. The different spellings for
SPSS include common names such as “SPSS” (78.4%), “SPSS Statistics” (10.8%), and
“Statistical Package for the Social Sciences” (3.8%), but also those with spelling mistakes
such as “Statistical Package for the Spcial [sic] Sciences”.

Figure 7 illustrates the top 10 software per research domain. Domain-specific
differences can be observed from the plot. No domain is consistent with the

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 22/47

http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 9 Overview of the 27 main research domains and 3 of their sub categories that were used to group journals. Bold font highlights the
abbreviation of the respective research domain used here.

Main research domain

Research subcategories (excerpt)

Physics and Astronomy

Chemistry

Social Sciences

Materials Science

Engineering

Economics, Econometrics and Finance
Multidisciplinary

Energy

Agricultural and Biological Sciences

Environmental Science
Veterinary

Nursing

Decision Sciences

Earth and Planetary Sciences

Pharmacology, Toxicology and
Pharmaceutics

Mathematics

Computer Science

Biochemistry, Genetics and Molecular
Biology

Dentistry

Neuroscience

Arts and Humanities

Psychology

Business, Management and Accounting
Medicine

Immunology and Microbiology

Health Professions

Chemical Engineering

Acoustics and Ultrasonics, Astronomy and Astrophysics, Atomic and Molecular Physics, and Optics
Analytical Chemistry, Chemistry (miscellaneous), Electrochemistry

Anthropology, Archeology, Communication

Biomaterials, Ceramics and Composites, Electronic

Aerospace Engineering, Architecture, Automotive Engineering

Economics and Econometrics, Economics, Econometrics and Finance (miscellaneous)
Multidisciplinary

Energy (miscellaneous), Energy Engineering and Power Technology, Fuel Technology

Agricultural and Biological Sciences (miscellaneous), Agronomy and Crop Science, Animal Science and
Zoology

Ecological Modeling, Ecology, Environmental Chemistry

Equine, Food Animals, Small Animals

Advanced and Specialized Nursing, Assessment and Diagnosis, Care Planning

Statistics, Probability and Uncertainty, Information Systems and Management

Atmospheric Science, Computers in Earth Sciences, Earth and Planetary Sciences (miscellaneous)

Drug Discovery, Pharmaceutical Science, Pharmacology

Algebra and Number Theory, Analysis, Applied Mathematics

Artificial Intelligence, Computational Theory and Mathematics, Computer Graphics and Computer-
Aided Design

Aging, Biochemistry, Biochemistry

Dentistry (miscellaneous), Oral Surgery, Orthodontics

Behavioral Neuroscience, Biological Psychiatry, Cellular and Molecular Neuroscience

Archeology (arts and humanities), Arts and Humanities (miscellaneous), Conservation

Applied Psychology, Clinical Psychology, Developmental and Educational Psychology

Accounting, Business and International Management, Business

Anatomy, Anesthesiology and Pain Medicine, Biochemistry (medical)

Applied Microbiology and Biotechnology, Immunology, Immunology and Microbiology (miscellaneous)
Chiropractics, Complementary and Manual Therapy, Health Information Management

Bioengineering, Catalysis, Chemical Engineering (miscellaneous)

domain-independent view (see Table 10), and each domain is characterized by a different
distribution of the top 10 software. While SPSS (top 1 for 13/27) and R (top 1 for 6/27)
together represent the top mentioned software in more the 70% of the domains, Excel,
BLAST, Prism, and ArcGIS (each 1/27) are the top software in Economics, Energy,
Immunology, and Business, respectively. The software SHELXL, SHELXS, SAINT, and
SHELXTL play a mayor role in Chemistry, Materials, and Physics, taking ranks among 1-5
in each of these domains, but are not among the top 10 in any other field. Several
programming environments are listed among the top 10 software, including R, Python,
Java, C, and C++, most prominent in Mathematics, Engineering, and Computer Science.
Material Science plays a special role, when it comes to domain specific software because

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 23/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

De+00 1le+D5
' '

100 =
90 -
80-
70 -
60 -
50-
40 =
30-
20-
10-

0-

Software mentions (relative)

Unigue software (absolute)
2e+05 3e+05 4e+05 Se+05 Be+05

= 1le+07

= Be+0E

%)

LUaul alemyos

-6e+06 5
-,

S

- 4e+06

- 2e+06

(amnjosq

i i i V i V V ‘ = Qe+00
30 40 50 60 70 80 a0 100

Unigue soﬂWére (relative)

Figure 6 Cumulative distribution of software mentions per unique software. Left (bottom) scale gives the relative values, whereas right (top) scale

provides the absolute numbers.

Full-size 4] DOT: 10.7717/peerj-cs.835/fig-6

Table 10 Information about the 10 most frequent software mentions across all disciplines together
with their absolute and relative number of mentions, the number of articles that contain at least one
mention and the number of spelling variation that could be disambiguated.

Software Absolute # Relative # # Articles # Spellings
SPSS 539,250 4.57 466,505 440
R 469,751 3.98 235,180 1
Prism 220,175 1.87 189,578 1
Image] 228,140 1.93 144,737 83
Windows 140,941 1.19 127,691 6
Stata 147,586 1.25 118,413 141
Excel 151,613 1.29 118,082 54
SAS 140,214 1.19 112,679 215
BLAST 271,343 2.30 104,734 383
MATLAB 160,164 1.36 89,346 6

the Operating System Windows is the only software that is shared with the top 10 overall
software, while the remaining software allows a unique characterization. Regarding
operating systems, Windows is frequently mentioned in all research domains, except for
Earth and Planetary Sciences and Energy. The Linux operating system, in contrast, is
ranked 5th in Mathematics, 7th in Decision Sciences, and 9th in Computer Science,
respectively. The source code and data repositories GitHub and FigShare are listed among
the top 10 software in Decision Science with rank 5 and 9.

Article level statistics

On the article level, we observe that each article contains 3.67 software mentions on
average, ranging from 0 software mentions for 1,301,192 articles to a maximum of 673
mentions for one article. Looking at the number of articles per year, it can be observed that
the relative number of articles mentioning at least one software increases over all articles.
Figure 8 (blue line) illustrates this graphically. Considering those articles only, a similar

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 24/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-6
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Rank.l.2.3.4.5.s.7-a 9 10

Veterinary - 7 - 10
Social = : B . 10
Psychology = 10 - ﬁ"
Physics- 10] 8
Pharmacology - 3 : [10
Nursing -] 10
Neuroscience - a 1§
Multidisciplinary -| 9 1
Medicine - 7 9 6
Mathematics - 10 . . 9
Materials - - ' ﬁ 10
Immunology - i 53] 5
Health - i 9
Environmental -

Domain

[)
=i
5 8
Business - : E 8 10
Biochemistry = i
Ans - B i
Agricultural -
g L] L} L} L L} L} L} L} L] il L} ‘:‘“I Ll L} L} L) L} L} L} L L] 1 L} I {I{
H4a * 85D %06 Q & O oo 8 U ») &
FErSTESEFCFESELEFE FILLOFS
5‘“036‘:{? SN T AL sS FLELE ké@‘
1?{9‘0"\«‘{050?9) Q‘“"g{'é 2
R o0& &
A
Software

Figure 7 Top 10 software per domain. Higher rank within the domain is represented by darker color. The number on the tile gives the rank within
the domain. Software with rank higher than 10, are excluded from the plot to improve readability. Software are ordered by rank over all domains left
to right. Full-size k] DOIL: 10.7717/peerj-cs.835/fig-7

—o— Articles with software (left scale) - ® - Software per article (right scale)

100~ -10
g0~ -9
8O- -8 2

z =

c' 70= -7 @

g 2
60~ =

g =

£ 50- & &

= B

= 40- i

= K

o 30- -1 5

o W
20- -2 2

5
10- -1 @
a- -0
1990 2000 2010 2000
Year

Figure 8 Blue: Relative frequency of articles with at least one software mention per year. Green:
Absolute mean frequency of unique software mentioned per article with at least one software
mention per year. Please note that standard deviations are at the same level as the actual average
values but are omitted here for reasons of readability. Full-size K&l DOT: 10.7717/peerj-cs.835/fig-8

trend can be observed from the mean frequency of software mentioned within one article
(Fig. 8, green line). Due to the low number of software mentions before 1997 (blue line),
the estimation of mean software frequencies per article is less reliable before 1997.

Schindler et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.835 I 00 25/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-7
http://dx.doi.org/10.7717/peerj-cs.835/fig-8
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

-o— Arficles with software (left scale) - o Software per article (night scale)

100 - il

He lad 3iemos anbiun

Relative frequency

Domain

Figure 9 Blue: Relative frequency of articles with at least one software mention per research domain.
Green: Average number of different software mentioned per article with at least one software
mention given by research domain. Note that standard deviations are large (similar to average
values) and are omitted here. Full-size] DOT: 10.7717/peerj-cs.835/fig-9

In 1997, a steep increase in the number of articles with software can be observed which
remains constant until 2000. From 2001 another increase until 2008 can be observed,
which is followed by a phase where the relative frequency of articles with software increases
more slowly until 2021. From 2007 more than 50% of the articles contain at least one
software, increasing to almost 75% in 2021. A notable decrease was observed for 2020.
With respect to the number of software per article (green line), the frequency remains at a
constant level of ~4 from 2005. Standard deviations are omitted but are on a high level
between 2 for low mean values and 4 for higher means. To determine the effect of the year
on the number of software per article, a linear model was fitted to explain the binary
logarithm of the number of software per article by the interaction of year and domain. We
found a significant (p < 0.001) but small influence of the year (slope = 0.017, S, = 0.0006, R?
= 0.06525), when considering the interaction with the domain.

When looking at the relative amount of articles with software per research domain, we
found notable differences between the individual domains. Figure 9 (blue line) illustrates
those differences graphically. While in Arts and Economics only 40% of the articles
contain software mentions, in Mathematics, Agriculture and Biological Sciences, and
Decision Sciences, more than 80% of the articles mention at least one software. The
number of different software per article draws a similar picture (Fig. 9, green line), ranging
from values of 2 or 3 in Arts, Economics, and Dentistry to values above 8 for Computer
Science, Mathematics, and Decision Science. A one-way ANOVA revealed these
differences to be significant (p < 0.001, Fyg 3468692 = 7950.1).

Comparing the amount of articles with software mentions with journal rank and
citation count per year, similar observations were found. Both graphs are illustrated in
Fig. 10. The graph illustrates the ventiles (20-quantiles) of the journal rank, grouped by
domain to prevent domain specific biases due to higher journal ranks. In detail, in the
first step, for each domain, the journals were distributed according to their rank ventiles
and the resulting ventiles were then merged across all domains. A similar approach was

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 26/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-9
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

—e— Articles with software (left scale) - e Software per article (right scale)

Citation per year
100 - =10

B - =6
* —'.
e <5
50 . _e 5
5 T T - E
40- T tind

e g ==

30-

un

5 20= =
(&1 F—
c 10- @
3 o- =
o Journal rank 5
Z 100- 104
o 90- v 3
®
X gn- -8 3
70- W -T2
2 =
60- f . -
50- \./"“ -0
L T e i o
40- L .-
i - -
= 2 - -
30- T . xsiaidil L=t 5 -

10 15 20
Ventile of bibliometric measure

m-

Figure 10 Blue: Relative frequency of articles that contain at least one software mention per rank of
bibliometric measure. Green: Average number of different software per article per bibliometric
measure. Note that the high standard deviation (at the same level as average values) are left out to
increase readability. Full-size K&l DOT: 10.7717/peerj-cs.835/fig-10

chosen for summarizing the articles via citation count ventiles. Please note that while for
journal rank based analysis all ranked journals could be considered, for citation count
analysis we restricted the analysis to all articles published before 2020 to reduce a bias
towards O citations. When considering the journal rank, we found that almost 75% of the
articles on the lowest rank contain software mentions, followed by a strong decrease for
the next two ventiles (blue line). For the remaining ventiles an increasing trend up to
almost 80% for higher journal ranks could be observed. When considering the amount of
software per article, an initial high-point and decrease for the four lower journal ranks
could be observed followed by an increasing trend with increasing journal rank (Fig. 10,
green line). A linear model to explain the relation between binary logarithm of the number
of software per article and the journal rank grouped by domain revealed a small but
significant (p < 0.001) effect (slope = 0.18, S, = 0.0017, R* = 0.087).

Similarly, a high value followed by a slight decrease could be observed for the
relative number of articles mentioning at least one software per citation count per year
(blue line), even though the pattern is not that distinctive. After reaching the minimum
frequency of articles containing software mentions in the 2nd ventile, the graph shows an
increasing trend for the remaining ventiles, with a slow decrease for the last seven ventiles.
The maximum frequency of articles with software mentions is reached at 13th citation
count ventile. A linear model to explain the relation between binary logarithm of the

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 27/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-10
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Software wio wersion or developer . wi version wi developer . wi version and developer - w/ citation
100~

SRR N9 220UV ST OO SRS -0 OO S 00dDd OO

= o L e A s B el =S R - e R e e - Irel Ndo oo o I~

0~ 0NN OO W M~ N0 R M= I~ M~ 0 M~ ™ @

R I R R R T Y o R S o TR O = M~ o m =T 0 o~ D o

e n oM~ Mmoo M~ o o~ - ™

. N T mmr-mz__'
fa=

Relative frequency
g

' ' ' '
1980 2000 2010 2020
Year

Figure 11 Distribution of software completeness per year with the percentage of unique software per
article that is cited with provided additional information. The colored bars represent the different
levels of completeness while the line chart separately indicates how many software mentions were
accompanied by a formal citation. The numbers at the top of the bars represent the absolute number of
software considered per year. Full-size K&] DOT: 10.7717/peerj-cs.835/fig-11

number of software per article and the citation count per year grouped by domain revealed
a small but significant (p < 0.001) effect (slope = 0.01, S, = 0.0003, R* = 0.065).

Software citation completeness

Considering articles containing software mentions, we analysed the amount of
information necessary to identify particular software provided for each software
mentioned within one article. For each unique software (which might be referred to
multiple times within the same article) we examined whether the version and/or the
developer was mentioned within the article. Moreover, the frequency of formal citation
(a citation referring to the bibliography of the article) was investigated.

Figure 11 depicts the completeness of software mentions per year. From the numbers
at the top of the bars, it can be seen that the number of unique software per article
increased over the years, ending with 1.44 M software mentions (unique per article) in
2020. The low number in 2021 reflects the time of data retrieval. Regarding citation
completeness, from 1990 to 1996 the amount of both, information accompanying mentions
as well as formal citations, is low for an overall low number of software mentions. From 1997
to 2000 there is a peak in additional information provided for software mentions with a
low number of corresponding formal citations. Afterwards, up to year 2007, there is a decay
in additional information for informal mentions and a contrary increase in formal citations.
From 2008 to 2010 there is another increase of the amount of provided information and
a decrease in formal citation. The numbers then stagnate up to 2021. Overall, it can be seen
that the frequency of software with developer decreases and with version increases. Both, the
relative amount of formal citations and the amount of software accompanied with
version and developer remained constant since 2009.

Considering domain specific software citation habits, Fig. 12 illustrates the amount of
information provided per software over different research domains. Mathematics,
Decision Science, and Computer Science provide the least additional information with

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 28/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-11
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Software wio version o developer . wi version vil developer . wi version and developer —#— w/ citation

g :
III
- alng Ill"'lll lll'l
!l---I-..........-ll.IIIIII

3816164
1669290
490713
690262
92675
172141
4058169

—J
[
'

Relative frequency
)

25=

&ﬁ@céégefgék C SIS SIS HS

F & & TS LES éxé&c-agaé”%*@eﬁ

FE5gse §§§f§ §§£§§§jfﬁ§§§
; 5 § § §

¥ @ §$T ¥ §§ é-? 5::@'

Figure 12 Distribution of software completeness per research domain. The numbers at the top of the
bars represent the absolute numbers of software considered per domain. Please note that articles may

belong to multiple categories. Full-size K&l DOT: 10.7717/peerj-cs.835/fig-12
wio version or developer . Wil version wi developer . wi version and developer ~#= W/ citation
1 a7 Py 1 I e i) i) e P)
T g & & ®m N © B L @ o @
® ®m = o @ e & M I ©®@ = W = ® o o

Relative frequency
g

BlEEEEEE=
15 20

Ventile of Journal Rank

(=]
0=
=
(=]

Figure 13 Distribution of software completeness per ventile of journal rank per research domains.
The numbers at the top of the bars represent the absolute numbers considered per ventiles.
Full-size K&l DOT: 10.7717/peerj-cs.835/fig-13

down to 20% of mentions, but all three have comparably high numbers of formal
citation with around 40%. Dentistry, Nursing, and Materials, in contrast, provide most
additional information with up to 70% of mentions but low numbers of formal citations
with down to 5%. Nursing and Dentistry also have the highest share of software together
with version and developer. In general, citation completeness is not better in domains
that use most software.

With respect to journal rank, a slight negative correlation between the rank ventile and
the amount of additional information can be observed. Figure 13 illustrates this relation
graphically. In contrast, a positive correlation between amount of formal citation and
journal rank can be seen. While most software are accompanied with developer for low
ranked journals (almost 70%), the percentage decreases with rising journal rank,

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 29/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-12
http://dx.doi.org/10.7717/peerj-cs.835/fig-13
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Software wio version or developer . Wi version wi developer . wiversion and developer ~#- i/ citation
L™ n N o o w© o o - T o © o~
U R | 8 g N ol 8] =] 8 2 R & a T - A
o o ~ 3 =] - o o (=1] =] - w w <] 0 =] 0 -
i om o= ¥ FE O E H & @ 1B =85 9 o=l =
2 & & o n = e e e e © = @ o e = = |8
F o 7o - SO P < = 7 S S M -~ S - = -

7h-

Relative frequency
)
D

25- !l
il.l........ll

Ventile of crtat[on count per year

Figure 14 Distribution of software completeness per ventile of citation count per research domain.
Note that only articles published before 2020 were included to prevent a bias towards lower citation
ventiles. Full-size Ka] DOT: 10.7717/peerj-cs.835/fig-14

reaching a first local minimum at rank 8 and the absolute minimum at the highest rank.
The use of formal citations, in contrast, shows an increase from ~10% at the lowest ranked
journals to about 30% at the highest ranked journals.

Considering the citation rank (see Fig. 14), a slight increase in provided additional
information could be observed in the first four ventiles and a slight decrease in the last four.
No notable difference could be observed for the remaining citation ventiles. For formal
citation, a slight increase over the ventiles can be observed, starting with 20% and reaching
up to over 25%.

Types of software mention

For each software mention, the KG contains information about the type of mention and
the type of software. The most frequent type of software is Application with 84.49%,
followed by Programming Environment with 7.29%, Plugln with 6.27%, and Operating
Systems with 1.95% of the mentions. When looking at the disambiguated software, 88.52%
of the software are Applications, 10.74% Pluglns, 0.41% Programming Environments, and
0.33% Operating Systems. With respect to the type of mention, we observed that most
mentions of software reflect Usage with 82.31%, whereas 15.09% represent Allusion. Only
2.01% (0.6%) of the software mentions represent Creation (Deposition) statements.
Table 11 gives a fine-grained overview of the relation between type of mention and type of
software. The mention type Usage is prevalent over all software types and the software
type Application over all mention types. Furthermore, we found that the relative frequency
for both Creation and Deposition is 0 for Operating Systems and Programming
Environments. When looking into domain specific differences, it can be observed that
Mathematics (51.4%), Engineering (55.0%), and Computer Science (55.0%) have the
lowest share of usage statements, while disciplines such as Energy (90.2%), Materials
Science (93.1%), Nursing (93.3%), Dentistry (93.9%), and Veterinary (95.7%) have the
highest share of usage statements. The opposite trend can be observed for software

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 30/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-14
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 11 Overview of the relative frequency of software and mention types as well as their
combinations over all software mentions. Note that overall numbers do not necessarily sum to 100
due to rounding issues.

Allusion Creation Deposition Usage Overall
Application 13.95 1.80 0.56 68.14 84.49
OperatingSystem 0.26 0.00 0.00 1.69 1.95
Plugln 0.47 0.17 0.04 5.58 6.27
ProgrammingEnvironment 0.40 0.00 0.00 6.88 7.29
Overall 15.09 2.01 0.60 8231 100.00

Table 12 Most frequent host software, i.e., mentioned together with a PlugIn, in combination with the most frequently used PlugIns for each
of them. # Plugln, distinct, disambiguated Pluglns; # Mention, overall PlugIn mentions.

Software

Top 5 Plugln incl. % of mentions

R
MATLAB

Python
python
Image]
Stata

Perl

Excel
Cytoscape
SPM

#
PlugIln Mention
19,442 220,750
4,442 18,616
3,157 11,688
1,449 3,533
1,286 10,761
809 2,190
774 1,176
644 1,946
553 5,902
521 2,671

Bioconductor (4.79%), ggplot 2 (3.63%), Ime 4 (3.21%), vegan (3.09%), DESeq 2 (2.52%)

Psychophysics Toolbox (6.75%), Psychtoolbox (6.03%), Statistics Toolbox (3.92%), Image Processing Toolbox (2.87%),
Neural Network Toolbox (1.43%)

scikit - learn (12.55%), SciPy (4.10%), TensorFlow (3.75%), Network (2.37%), scipy (2.30%)

scikit - learn (10.44%), scipy (3.85%), sklearn (2.83%), matplotlib (2.52%), HTSeq (2.12%)

Fiji (44.10%), Neuron] (3.00%), Cell Counter (2.77%), MTrack] (2.11%), Analyze Particles (1.64%)

metan (5.94%), runmlwin (3.06%), mvmeta (2.33%), Image Composite Editor (1.87%), metareg (1.78%)
MISA (3.74%), speaks - NONMEM (2.64%), Bioconductor (2.21%), NONMEM (1.36%), Shell (1.11%)
XLSTAT (17.83%), nSolver (3.96%), Microsatellite Toolkit (2.77%), Analysis ToolPak (2.00%), @ Risk (1.95%)
ClueGO (13.62%), MCODE (13.00%), BINGO (7.66%), NetworkAnalyzer (7.56%), Enrichment Map (5.71%)
DARTEL (20.10%), MarsBaR (9.55%), Marsbar (2.92%), CONN (2.62%), DPARSF (2.55%)

Allusion statements, starting with Veterinary (3.9%) and ending with Mathematics
(40.7%). Software Creation statements have the highest proportion in Mathematics with
6% of all mentions, followed by Engineering (5.4%) and Computer Science (5.4%). In
Dentistry and Veterinary only 0.3% and 0.4% are Creation statements. Decision Sciences
(1.8%), Mathematics (1.7%) and Computer Science (1.5%) have the highest share of
deposition statements, in contrast, less than 0.1% of software mentions are Deposition
statements in Materials Science and Veterinary.

The software type Plugln plays a special role, as it can only be used together with
another software, requiring the mention of both, the host software and the Plugln.
Table 12 lists the top 10 host software together with the number of Pluglns identified for
this software, the overall amout of PlugIn mentions for the software and its top 5 PlugIns.
The Programming Environment R was found to be by far the software with most
Pluglns (19,442 distinct Pluglns), followed by Matlab and Python. As most frequently
mentioned Pluglns for R we found Bioconductor, ggplot2, Ime4, vegan, and DESeq2 which
together account for 17.2% of all R PlugIn mentions. Note that the two different spellings
Python and python were not linked together but reflect a similar distribution of Pluglns.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 31/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 13 Top 10 most frequent URLs accompanying software deposition and usage statements
together with their absolute and relative frequencies.

Deposition Usage

URL Absolute Relative URL Absolute Relative
github.com 8,602 13.93 github.com 18,918 3.90
journals.plos.org 5,926 9.60 ncbinlm.nih.gov 16,832 3.47
sourceforge.net 918 1.49 r-project.org 13,176 2.71
cran.r-project.org 673 1.09 pacev2.apexcovantage.com 10,504 2.16
bioconductor.org 651 1.05 ebi.ac.uk 9,850 2.03
ebi.ac.uk 478 0.77 blast.ncbi.nlm.nih.gov 8,797 1.81
ncbi.nlm.nih.gov 454 0.74 cbs.dtu.dk 6,539 1.35
bitbucket.org 423 0.69 filion.ucl.ac.uk 6,439 1.33
code.google.com 353 0.57 cran.r-project.org 6,015 1.24
string-db.org 204 0.33 targetscan.org 5,738 1.18

Software creation and deposition

Software Usage and Deposition statements are often accompanied by URLs to provide a
location to access a software and make it findable for the scientific community. Table 13
shows the most common domains of URLs mentioned in combination with software
Usage and software Depositions. Usage domains (right) correspond to specific software,
for instance, blast.ncbi.nlm.nih.gov or r-project.org for BLAST and R, but also to software
repositories such as GitHub and specific software package repositories such as CRAN
cran.r-project.org. For Depositions (left) we found that most of the URLs point to source
code and software repositories. GitHub (github.com) is the most frequent domain with
14% of overall URLs, but other public repositories such as SourceForge, BitBucket or
Google Code are present as well as repositories focused on packages such as CRAN and
BioConductor.

Another aspect of recognizing software Creation and Deposition statements in articles
is that it allows to identify journals that are most frequently used for the description of new
software. By analyzing the relative number of articles per journal that contain either a
software Creation or Deposition statement, we were able to find the most active journals
when it comes to software description. Considering only journals with at least 10 articles,
we found that with 90% of the articles containing software Creation statements, the
Proceedings of the VLDB Endowment is ranked highest among journals introducing
software. It is followed by the journal Source Code for Biology and Medicine with 84.4%,
Database: the journal of biological databases and curation with 74.4%, and the Journal of
Open Research Software and Bioinformatics with 72.7% and 70.8%, respectively. The
journal Source Code for Biology and Medicine contains the most articles with software
Deposition statements (64.7%), followed by the Journal of Open Research Software and
Neuroinformatics with 54.5% and 47.1%, respectively. From 15,388 journals, only 3,622
journals contain at least one article with either Creation or Deposition statements.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 32/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

DISCUSSION

Reliable method for software mention extraction

Information extraction is based on reliable ground truth data from SoMESct (IRR F = 0.93,
x = 0.82). In combination with state-of-the-art language models for scientific articles
such as SciBERT, we achieve state-of-the-art performance for software mention extraction
in scientific articles. Regarding software recognition, the SOMESct baseline was
outperformed by a notable margin raising performance to F = 0.88 from F = 0.83 by 5 pp.
This also represents an increase over the previous automatic approaches by Pan et al.
(2015) with F = 0.58, Duck et al. (2016) with F = 0.67, Lopez et al. (2021) with F = 0.74 and
Schindler, Zapilko ¢ Kriiger (2020) with F = 0.82, however, as prior work was based on
different data bases, the results are not directly comparable. With respect to the chosen
NER architecture, SciBERT achieved superior recognition rates when compared with
Bi-LSTM based models, illustrating the effectiveness of SciBERT for mining scholarly
documents. Interestingly, Lopez et al. (2021) report notable lower performances for both
architectures, which we believe results from the less reliable input including PDF
conversion artifacts and ground truth annotation.

Regarding the identification of additional information (F = 0.89, baseline F = 0.85) as
well as software type (F = 0.80, SOMEScI baseline F = 0.78) and mention type (F = 0.81,
SoMEScr baseline F = 0.74), we achieve better performance than baseline results,
especially considering that the reported results already take error propagation into
account, which is not the case for baseline results. We also achieve better performance for
Version, Developer, and URL as reported for the Softcite corpus (Du et al., 2021; Lopez
et al., 2021), however, these results cannot be directly compared due to different training
and test data. Moreover, the study presented here is the first that classifies software
mentions according to both, software and mention type. However, we found that software
type PlugIn and mention type Allusion were extracted with lower performance as other
types. In both cases the lower performance is mainly due to confusion with another
class (Application and Usage) with corresponding higher prior probability but a difficult to
distinguish context. This is consistent with the results of the manual annotation performed
for SOMEScr (Schindler et al., 2021b), where annotation IRR was also found to be lowest
for these classes.

RE and disambiguation for software mentions has, to the best of our knowledge, not
been evaluated as part of any scientific investigation of software mentions in scholarly
publications besides the SoMEScr baseline. We improve RE performance by 6 pp from
F =0.88 to F = 0.94. RE performs well for additional information related to software, but it
is challenging (F = 0.71-0.78) to predict relations between software entities such as the
plugin-of relation. This was expected since, by definition, additional information is always
related to another entity while two software entities are not necessarily related to each
other. Consequently, relations between software are rare compared to the overall number
of software mentions. It should also be noted that both, baseline and our reported results,
do not take error propagation from entity recognition to RE into account. Overall, we
achieved superior recognition rates compared to previous, automatic, large scale analyses

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 33/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

! All 440 different spellings of SPSS have
manually been validated.

of software mentions in scholarly publications and conclude, thus, that software mentions
and additional information extracted by our pipeline are more reliable.

With respect to disambiguation, it has to be noted that previous large scale analyses
did not consider spelling variations but only summarized software mentions with equal
(or similar) spellings. As this is the first study to use disambiguation methods for
software mentions, comparison to state-of-the-art results is not possible. However, the
disambiguation baseline performance for SOMESct of F = 0.97 was matched, while
considering a much denser feature space. In small data sets, only few spelling variations
(and other features used for disambiguation) of software exist; this number increases with
the size of the data set. This means that finding reliable boundaries between different
software gets harder with increasing size of the data set as rare spelling variations (and
other features) of software with similar names tend to overlap stronger with increasing
amounts of data. In our case, the training data set contains 3,756 software mentions from
637 different software while information extraction resulted in almost 12 M software
mentions. To recreate this effect for the training data, we included a large set of augmented,
fictional software names. With respect to evaluation, the negative effect of increasing
sample size on the ability of finding reliable boundaries between different software
prevents the transfer of quality statement from training to inference dataset. To counteract
this effect, we included the manually disambiguated training data in the inference dataset,
determined the clustering threshold, and evaluated the quality based on those samples.
Same as for RE, it should be noted that error propagation from the previous information
extraction steps influence disambiguation performance. The additional augmented
samples simulate the effect of false positives, but we cannot estimate to what extent they are
successful at suppressing resulting errors. False negative samples do in practice directly
influence linking quality.

Due to computational and space complexity we chose a single linkage-based clustering,
which is known for semantic drift away from cluster means, but enables an efficient
implementation when distance between all pairs is pre-computed and sorted up to a given
threshold. Average linkage would have required to re-compute the average distance of all
clusters in each step. An initial evaluation showed only marginal differences between
single and average linking based clustering for disambiguation, which seemed sufficient for
the task at hand. Overall, disambiguation provides reasonable results; 440 different
spellings for SPSS', have, for instance, been discovered. For the different spellings python
and Python (see Table 12), however, no common cluster could be determined. While this
clearly represents an error when considering the string only, our machine learning
based distance additionally considers the context and accompanying entities such as
developer and URL. We believe that the reason here is the low number of spelling
variations that prevent the semantic drift to counteract misleading linking probabilities. In
consequence, this would mean that more frequent software (with many different contexts
and spelling variations) are more likely to be disambiguated than less frequent software
(with fewer contexts and spelling variations), which may have had a reinforcing effect on
the power law distribution of mentioned software. For software with more frequent
spelling and context variations, in contrast, this might result in more false positives and

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 34/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

thus overestimate the software use. For Excel, 54 spelling variations were found that
represent 152 K mentions. From those only about 150 K mentions (from 13 different
spellings) can be considered as correctly classified. The remaining mentions contain
software such as Firefox (1,162, 0.7%) or F (185, 0.1%). A similar phenomenon could be
observed for Stata. While disambiguation performance is satisfactory the algorithm can be
improved in future work, for instance, by including information on Pluglns provided
with software names after an initial disambiguation of the PlugIn names. However, this
would lead to higher run-time requirements because a higher number of mention contexts
needs to be considered to cover rare features such as Pluglns. The number is currently
limited to n = 6.

SoftwareKG: knowledge graph of software mentions

SoftwareKG represents the largest dataset of software mentions and related metadata in
scholarly publication. It contains 11.8 M software mentions of over 605 K different
software automatically extracted from more than 3 M Open Access articles from PMC.
Moreover information from PubMedKG was integrated to allow bibliometric analyses.
The KG was created by re-using established vocabularies for data representation, such as
schema.org, BIBO, and DCT and is available as JSON-LD under Creative Commons
Attribution at Zenodo (Schindler et al., 2021a). The published version of the KG only
contains information available under open licenses. As this is not the case for most of the
bibliometric data, those parts where excluded from publication.

SoftwareKG consists of over 300 M triples describing the properties and relations
between more than 55 M resources. A summary of the properties of SoftwareKG is given in
Table 14. In SoftwareKG, we employ frequency-based confidence values to provide a
transparent way to analyse errors that originate from information extraction or author
spelling variations. For names, developers as well as software type and other information
we included those confidence values in the reification statements to allow further analyses.

SoftwareKG facilitates the large-scale analysis of software mentions in scholarly
publications and allows to give insights into the role of software in science. A tutorial to
recreate all tables and figures from the KG is included in the Supplemental Material
(https://github.com/f-krueger/SoftwareKG-PMC-Analysis). This article contains first
analyses and sketches the potential for more elaborate studies. This includes the creation of
an impact measure for scientific software but also to provide a software mapping for
science in general such as swMath (Greuel & Sperber, 2014) for Mathematics.

The role of software in science/PMC

Software mentions

With an average of 3.67 software mentions per article, our result confirms previous studies,
ranging from 2.6 (Schindler et al., 2021b) to 3.2 (Howison ¢ Bullard, 2016) to 5.5 (Duck
et al., 2016) in different subsets of PMC. With over 605 K, the number of different software
from over 11.8 M mentions is high, given that 3.2 M articles were investigated. This
number probably overestimates the actual number of software used in science, due to
errors from information extraction and disambiguation. The distribution of software

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 35/47

http://dx.doi.org/10.7717/peerj-cs.835#supplemental-information
https://github.com/f-krueger/SoftwareKG-PMC-Analysis
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Table 14 Statistics of SoftwareKG. Left: general KG properties. Right: frequencies of resources per

type.
Property Frequency
Triples 301,825,757
Resources 55,953,270
Distinct Types 12
Distinct Properties 47
Reification Statements 2,042,076
Type Frequency
nif:String 22,066,759
schema:Person 20,373,227
schema:Organization 7,063,708
schema:ScholarlyArticle 3,215,346
rdf:Statement 2,042,076
irao:Software 605,352
skg:SoftwareVersion 380,234
skg:JournalInformation 134,369
bibo:Journal 15,338
dct:LicenseDocument 4,748
skos:Concept 303
skos:ConceptScheme 27

mentions per software shows that only few software are used in a large number of articles
and thus play a major role in science. This distribution partly confirms the general
trend but shows even higher skewness as previously reported statements about the
distribution of software mentions in scholarly articles (Pan et al., 2015; Duck et al., 2016).
This amplified trend could be the result of software name disambiguation which was not
applied in previous studies and highlights the importance of considering all spelling
variations for software usage analysis. The most frequent software (7 from the top 10) are
mainly used for statistical data analysis. A closer look at the domain specific distribution of
the top 10 software revealed domain specific differences as it characterizes all of the
analysed domains uniquely. The software SHELXL and SAINT, for instance, are most
frequently but exclusively used in Chemistry, Materials and Physics, whereas Excel is
frequently used in almost all other research domains except for them. Overall, an increased
role of applications that can be controlled via scripts rather than point and click software
can be observed. Schindler, Zapilko & Kriiger (2020) reported that the Programming
Environment R superseded SPSS in an excerpt of articles in PLoS One from 2017. While a
similar trend can be seen here, the particular ranks did not change yet, see Fig. 15.
While the usage of SPSS, Excel, and SAS remained constant over the last 5 years at the
relative level, usages of R and Python increased. Considering articles from PLoS One only,
R replaced SPSS at the top position, which confirms the result and suggests journal specific
software preferences.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 36/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

75000 -
50000 -

25000~

(=]
l
]
L1

Frequency

20~

10- el

Excel Prism Python SAS Stata
Software
- |magel -#— python -+ R e~ SPSS
Absolute
»
.'/.
.“'.
e e a8 o
Relative
2= —— 48— — -—
e
-
-
A
-
- &
o =

-

2005 2010 2015 2020
Year

Figure 15 Relative and absolute amount of articles per year mentioning the top statistical software.

Full-size Kal DOI: 10.7717/peerj-cs.835/fig-15

> When interpreting the journal rank as an
indicator of journal quality and thus for
review quality.

Article level statistics

The importance of software increased in recent years for both, the actual investigation as
well as the reporting within the scholarly publication. This is suggested by the increasing
trend of including software mentions into the textual description and the increasing
number of different software per article. A reason could be the growing complexity of data
driven analyses requiring more software to be employed, coupled with a high awareness
about transparency and reproducibility in general. The positive correlation between
journal rank and number of different software supports this by suggesting strong rigor in
the description of the analysis”. The positive correlation of the number of software and
the number of citations per article indicates a growing appreciation of the traceability of
the described research processes. The observed domain specific difference in software
usage could reflect the role of data in those domains. While in Arts and Humanities and
Economics only few articles mention only few software suggesting an important role of
manual data analysis, in Mathematics, Computer Science, Decision Science, and
Agricultural and Biological Science many articles mention multiple different software
indicating automatic and complex data collection and analyses.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 37/47

http://dx.doi.org/10.7717/peerj-cs.835/fig-15
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Software citation completeness

Citation completeness has not improved over recent years, that is, the information
provided to identify the particular software is not provided to full extent. This suggests a
lack of awareness about the necessity to understand and reproduce research processes and
its requirement for identifying particular software versions. When comparing formal
citation, i.e., providing a formal literature reference, with in-text mention, we found
contrary trends both over time and across categories. Here, we consider in-text citations as
complete when version and developer are included, while formal citations are always
considered sufficient. Following this definition, only about 38% of the articles in 2020 allow
the unique identification of the used software based on the provided information.
Software usages in the technical domains use formal citation more frequently in contrast to
research domains related to medicine. We believe the reason to be that the latter more
frequently employ other materials and devices and adapt the same citation style for

all research objects other than scholarly publications. With respect to journal rank, we see a
growing trend in the usage of formal software citation with rising rank and a contrary
trend in the completeness of in-text software mention. We believe that this supports the
statement of increasing rigor in scholarly review and the request for more traceable
descriptions in higher quality journals. This is also supported by the slight increase of
formal citation frequency and contrary decrease of citation completeness for rising
citation count. In summary, our results indicate that software citation standards, as
suggested by Katz et al. (2021) or Smith, Katz ¢ Niemeyer (2016) have not been adequately
adapted in scholarly publications, yet.

Types of software mention

Each software mention is classified according to mention type indicating the reason why
the software was mentioned within the scholarly article and software type providing
information about the particular kind of software. Analyses of disciplinary differences
showed that most software is created and published by scientists from the technical
domains (Mathematics, Engineering and Computer Science). This reflects the domains
with the highest interest in automating complex calculations combined with the
programming knowledge to implement new suited software applications. Further, software
allusions without actual usage are also more common within scholarly publications from
those disciplines indicating more description, discussion and comparison between
software entities. On the other hand there are disciplines which mostly reuse existing
scientific software such as Material Science, Nursing, Dentistry, and Veterinary.

When looking at the different kinds of software, we found an increasing trend of using
Pluglns over recent years, see supplementary Fig. Al. The relative frequency of
Application mentions, in contrast, declined. We see this as an indicator toward the usage
and extension of established software frameworks. With respect to the host software, we
found a notable overlap in the most frequently used software (Table 10) and the most
important host software (Table 12). This includes the Programming Environments R and
Matlab, but also the Applications Image], Stata, and Excel. More than 19 K Pluglns
were found for the Programming Environment R making it the most important host

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 38/47

http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

? Package counts for CRAN and Bio-
conductor were retrieved on October 4th,
2021.

software for scientific investigations. While this number seems high at first glance,
inspecting the two most important package repositories, CRAN (https://cran.r-project.org/)
and Bioconductor (https://www.bioconductor.org/) with 18,312 and 2,042 unique
packages” indicates these results to be plausible. However, the comparably low FScores for
the identification of Pluglns might have resulted in an overestimation of less frequent
Pluglns. This growing interest in the Programming Environment R and its package
universe was previously investigated (Li, Yan ¢ Feng, 2017; Li & Yan, 2018), some results
of which are confirmed here. In particular, we see an overlap for the most frequent R
packages.

Software creation and deposition

By analyzing the mention types Creation and Deposition, we were able to identify the most
important targets for the publication of software. On the one hand this includes web
services such as GitHub for general purpose software and CRAN for R packages, on

the other hand software journals. Specifically designed repositories to host and assign
Digital Object Identifiers (DOI) to scientific research data such as Zenodo are not
commonly used for publishing scientific software with a share of <1% of depositions.
While this allows to provide researchers with recommendations on where to publish their
software and/or the corresponding description, it also enables the search for software.
Moreover, the identification of Creation and Deposition allows to track the scientific
software landscape with low latency. It has to be noted that the second most frequent
deposition URL is the result of a false software mention detection and its propagation.

Summary

The importance of software in science has been growing in recent years, in both relative
and absolute numbers. The awareness for providing all necessary information to enable the
identification of the particular software by others, in contrast, remains unchanged.
Software citation principles have not been adapted yet in scholarly publications. However,
articles in higher ranked journals tend to more formal software citations instead of in-text
citations, which reflects recent software citation recommendations (Kaiz et al., 2021).
Articles in lower ranked journals provide more complete in-text citations, i.e., Version and
Developer. We identified domain specific software citation habits: Medicine related
domains prefer in-text citation, while technical domains tend to more formal citations.
Domain independent as well as domain specific software is used across most research
domains, the top 10 of which represent domain specific characteristics. Most software
mentioned in scholarly articles are software for statistical analysis, such as SPSS, R, and
Prism. Interestingly, we identified an increased interest in the usage of Pluglns, which
allow the problem specific extension of general purpose software. The most important
representatives of them are the Programming Environments R, MATLAB, and Python.
Finally, we confirmed GitHub as a central repository for scientific software, for both
publication and re-use, as previously assumed (Russell et al., 2018).

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 39/47

https://cran.r-project.org/
https://www.bioconductor.org/
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Limitations of the study

The study presented in this article involves complex data processing and information
extraction steps, where each of these is subject to limitations that are discussed in the
following.

The articles in SoftwareKG cover a broad range of scientific disciplines, however, the
selection of PMC as primary data source implies a bias towards Medicine. While the
training data set SOMEScl itself is also taken from PMC, the selection might introduce
domain specific biases. Therefore, the trends reported here, might be different if we look at
a domain such as computer science in general. For instance, BLAST is the second most
used software in computer science in our set, which would likely not be true when looking
at computer science in general, as this software is primarily used in Bioinformatics.
Another bias in the selection of articles is towards open access, as all article are from
the PMC Open Access subset. Researchers choosing to publish under open access might
also be supporters of open data movement and, therefore, have a better awareness for
attributing other open work such as software.

For information extraction and disambiguation, we found high performance for all
employed machine learning methods. However, it is important to consider error
propagation between them. The given evaluation for software and mention type
classification does take error propagation into account, but the results for RE and
entity disambiguation do not. Therefore, the F = 0.94 performance for RE might
overestimate the true performance as it relies on results of F = 0.885 entity recognition.
For disambiguation we model the effects of false positive entities by data augmentation,
but it is hardly possible to tell if this completely suppresses their effect and false
negatives do directly influence disambiguation performance. Moreover, evaluation for
disambiguation has proven to be challenging and the gold standard dataset alone is no
good predictor for performance on large scale entity disambiguation. We, therefore,
adjusted our evaluation method to take the large scale data into account, but note that
further systematic evaluation is required for entity disambiguation.

Our analyses regarding domains, journal rank and citation count rely on external
data and are, thus, influenced by their quality. For instance, only 86.7% of our data was
covered by Scimago data on domains and journal rank. Regarding the external citation
data we assumed completeness but in case article citations were missing from the list they
were not included in the computed citation count. In case one article would miss
completely it would be counted with a citation count of 0.

An analysis of the article types (skg:documentType) contained in SoftwareKG showed
that aside the largest group of research articles it also covers review articles and
abstracts, but also case reports or letters and several other categories. For each of the
groups we did find publications that cite software, but the prior probability for software
mentions across article types differs. Therefore, it is important to note that the reported
results are not specific to only research articles but to the distribution of scientific
publications indexed in the PMC OA subset. The information about the article type,
however, is included in the KG enabling others to analyse these effects.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 40/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

* SoftwareKG actually contains articles
from before 1990, but we restricted most
analyses to time between 1990 and 2021.

CONCLUSION

In this article we presented the largest analysis of software usage in scholarly publications
over the longest duration covering articles between 1990 and 2021". Software mentions
were identified by automatic information extraction covering NER for software and
associated information, software and mention type classification, and RE between software
and additional information. Moreover, in difference to previous studies, software names
were automatically disambiguated to allow reasoning about software usage even when
the same software is referred to by different names. The analysis covers 3.2 M articles,
mentioning a total of 11.8 M software.

From the extracted information, we created SoftwareKG, the largest KG describing
software mentions in scholarly publications. The KG was created by re-using existing
vocabularies and published under an Open Access license to support further research on
the role of software in science. SoftwareKG consists of over 300 M triples and contains
information about software, accompanying information as well as information about
articles, journals, authors, and publishers.

We performed a large-scale analysis on SoftwareKG with respect to publication date,
article domain, journal rank and article citation count in order to identify differences and
trends in software mention. Overall, the results show that software usage has increased
over the course of the last 10 years, but we found no change in citation completeness
during this time frame. This leads us to believe that there is still a lack in awareness for
software citation in science, even so software citation standards have been available and
promoted since 2016, e.g., by Smith, Katz ¢» Niemeyer (2016).

We also identified a trend towards using extendable software architectures instead of
stand-alone software, especially in combination with the Programming Environment R.
Overall, their design allows an easy extension and offers high flexibility. Especially
adding functionality and publishing new packages or Pluglns is facilitated. We could also
show this trend by analyzing which infrastructure is used by scientists to publish their
software, with GitHub playing a central role, but CRAN and Bioconductor being especially
important in combination with R.

In general, we show that there are many domain specific peculiarities in software usage.
We showed that the amount of software usage as well as the most used software per domain
and their application purpose varies significantly. Domain specific citation habits are also
reflected in preferences to formal and informal software citation, ranging from 5-40% in
formal citation contrasting to 1-35% software citation completeness with opposing trends.

Overall, we believe that SoftwareKG provides a valuable data source for further
investigations about the role of software in science. One finding that should be further
investigated is, for instance, the influence of journal rank on formal citation of software
usage. The trend could, for instance, be explained by higher review quality and journal
policies enforcing better software citation. Further insights could allow to give better
recommendations for journals to encourage software citations habits.

In future work SoftwareKG can build the basis to further explore software usage in
science, for instance, as a mapping for available software and newly established software.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 41/47

http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

It can also be used to track software usage and establish software impact measures.
Furthermore, the investigation of formal software citations should be extended to
include the citation targets. Currently, formal citations are recognized, but not further
analysed. In the future we need to include a distinction between software citation and
software article citation and model citation completeness within formal citations.

Software and Data

We implemented all machine learning models for information extraction in Python 3.9.5
(Van Rossum & Drake, 2009), utilizing the following packages: PyTorch 1.9.0 (Paszke et al.,
2019) for deep learning models, Huggingface transformers 4.9.1 (Wolf et al., 2020) to load
and fine-tune pre-trained BERT models, Gensim 4.0.1 (Rehiiiek ¢ Sojka, 2010) for
pre-training word embeddings, scikit-learn 0.24.2 (Pedregosa et al., 2011) for
implementation of RE models, articlenizer R-14.06.2021 (Schindler, Zapilko ¢ Kriiger,
2020, https://github.com/dave-s477/articlenizer) for preprocessing of scientific articles,
and NLTK 3.6.2 (Loper ¢ Bird, 2002) for feature extraction. Moreover, to extract JATS
XML meta data we used Ixml 4.6.3 (Behnel, Faasen ¢ Bicking, 2005) and for knowledge
graph construction rdflib 6.0.0 (RDFLib Team https://github.com/RDFLib/rdflib). For
statistical analysis and generation of figures we used R 4.1.1 (R Core Team, 2021), utilizing
tidy verse 1.3.1 (Wickham et al., 2019) for data processing and plotting and SPARQL 1.16
(van Hage et al., 2013) to access the KG interface. To setup a SPARQL endpoint for
SoftwareKG we used OpenLink Virtuoso Open Source Edition 07.20.3229 (OpenLink,
2021), available as docker from https://hub.docker.com/r/tenforce/virtuoso/.

Source code for construction and analysis is published on GitHub at https://github.com/
f-krueger/SoftwareKG-PMC-Analysis and the data for SoftwareKG (Schindler et al.,
2021a) itself is available on Zenodo via https://doi.org/10.5281/zenodo.5553737. To
facilitate reproducibility of our data analysis, a docker file including a suited R
environment to execute analyses on SoftwareKG is included.

ABBREVIATIONS

KG Knowledge Graph

IRR Inter-Rater Reliability
PMC PubMed Central

PP percentage points

JATS Journal Article Tag Suite
NER Named Entity Recognition
RE Relation Extraction
Funding

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) as part of the projects SFB 1270/2 (grant: 299150580) and
ScienceLinker (grant: 404417453). Parts of the computation were done by using a

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 42/47

https://github.com/dave-s477/articlenizer
https://github.com/RDFLib/rdflib
https://hub.docker.com/r/tenforce/virtuoso/
https://github.com/f-krueger/SoftwareKG-PMC-Analysis
https://github.com/f-krueger/SoftwareKG-PMC-Analysis
https://doi.org/10.5281/zenodo.5553737
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

computer cluster funded by DFG (grant: 440623123). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) SFB 1270/2:
299150580.

ScienceLinker: 404417453.

DFG: 440623123.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e David Schindler conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

e Felix Bensmann performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

e Stefan Dietze conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

e Frank Kriiger conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code is available at GitHub: https://github.com/f-krueger/SoftwareKG-
PMC-Analysis.

The data is available at Zenodo: Schindler, David, Bensmann, Felix, Dietze, Stefan, &
Kriiger, Frank. (2021). SoftwareKG-PMC (0.2) [Data set]. Zenodo. https://doi.org/10.
5281/zenodo.5713973.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.835#supplemental-information.

REFERENCES

Allen A, Teuben PJ, Ryan PW. 2018. Schroedinger’s code: a preliminary study on research source
code availability and link persistence in astrophysics. The Astrophysical Journal Supplement
Series 236(1):10 DOI 10.3847/1538-4365/aab764.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 43/47

https://github.com/f-krueger/SoftwareKG-PMC-Analysis
https://github.com/f-krueger/SoftwareKG-PMC-Analysis
https://doi.org/10.5281/zenodo.5713973
https://doi.org/10.5281/zenodo.5713973
http://dx.doi.org/10.7717/peerj-cs.835#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.835#supplemental-information
http://dx.doi.org/10.3847/1538-4365/aab764
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. 2007. DBpedia: a nucleus for a web
of open data. In: The Semantic Web. Berlin: Springer, 722-735
DOI 10.1007/978-3-540-76298-0_52.

Bach NV. 2021. Informatics research artifacts ontology. Ontology Specification for IRAO version
1.1.1. Available at http://ontology.ethereal.cz/irao.

Behnel S, Faasen M, Bicking I. 2005. lxml: XML and HTML with Python. GitHub.
Version 4.6.3. Available at https://github.com/lxml/lxml.

Beltagy I, Lo K, Cohan A. 2019. SciBERT: a pretrained language model for scientific text. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong: Association for Computational Linguistics, 3615-3620 DOI 10.18653/v1/D19-1371.

D’Arcus B, Giasson F. 2009. Bibliographic ontology specification revision: 1.3. Ontology
Specification for BIBO. Available at https://bibliontology.com/.

DCMI Usage Board. 2020. Dcmi metadata terms. Ontology Specification for DCT. Available at
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/.

Devlin J, Chang M-W, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Vol. 1. Minneapolis: Association for Computational Linguistics, 4171-4186
DOI 10.18653/v1/N19-1423.

Du C, Cohoon J, Lopez P, Howison J. 2021. Softcite dataset: a dataset of software mentions in
biomedical and economic research publications. Journal of the Association for Information
Science and Technology 72(7):870-884 DOI 10.1002/asi.24454.

Duck G, Nenadic G, Filannino M, Brass A, Robertson DL, Stevens R. 2016. A survey of
bioinformatics database and software usage through mining the literature. PLOS ONE
11(6):1-25 DOI 10.1371/journal.pone.0157989.

Garijo D, Ratnakar V, Gil Y, Khider D, Osorio M. 2019. The software description ontology.
Revision: 1.4.0. Ontology Specification for SDO. Available at https://w3id.org/okn/o/sd/1.4.0.

Gil Y, Ratnakar V, Garijo D. 2015. Ontosoft: capturing scientific software metadata. In:
Proceedings of the 8th International Conference on Knowledge Capture, K-CAP 2015, New York:
Association for Computing Machinery DOI 10.1145/2815833.2816955.

Greuel G-M, Sperber W. 2014. swmath—an information service for mathematical software. In:
International Congress on Mathematical Software. Berlin: Springer, 691-701
DOI 10.1007/978-3-662-44199-2_103.

GROBID. 2021. Grobid. GitHub. Available at https://github.com/kermitt2/grobid.

Guha RV, Brickley D, Macbeth S. 2016. Schema.org: evolution of structured data on the web.
Communications of the ACM 59(2):44-51 DOI 10.1145/2844544.

Hellmann S, Lehmann J, Auer S, Briimmer M. 2013. Integrating NLP using linked data. In:
Alani H, Kagal L, Fokoue A, Groth P, Biemann C, Parreira JX, Aroyo L, Noy N, Welty C,
Janowicz K, eds. The Semantic Web - ISWC 2013. Berlin: Springer, 98-113
DOI 10.1007/978-3-642-41338-4_7.

Howison], Bullard J. 2016. Software in the scientific literature: problems with seeing, finding, and
using software mentioned in the biology literature. Journal of the Association for Information
Science and Technology 67(9):2137-2155 DOI 10.1002/asi.23538.

Jones MB, Boettiger C, Cabunoc Mayes A, Smith A, Slaughter P, Niemeyer K, Gil Y, Fenner M,
Nowak K, Hahnel M, Coy L, Allen A, Crosas M, Sands A, Hong NC, Katz DS, Goble C. 2017.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 44/47

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://ontology.ethereal.cz/irao
https://github.com/lxml/lxml
http://dx.doi.org/10.18653/v1/D19-1371
https://bibliontology.com/
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1002/asi.24454
http://dx.doi.org/10.1371/journal.pone.0157989
https://w3id.org/okn/o/sd/1.4.0
http://dx.doi.org/10.1145/2815833.2816955
http://dx.doi.org/10.1007/978-3-662-44199-2_103
https://github.com/kermitt2/grobid
http://dx.doi.org/10.1145/2844544
http://dx.doi.org/10.1007/978-3-642-41338-4_7
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Codemeta: an exchange schema for software metadata. version 2.0. GitHub. Available at
https://github.com/codemeta/codemeta.

Katz DS, Chue Hong NP, Clark T, Muench A, Stall S, Bouquin D, Cannon M, Edmunds S, Faez
T, Feeney P, Fenner M, Friedman M, Grenier G, Harrison M, Heber J, Leary A, MacCallum
C, Murray H, Pastrana E, Perry K, Schuster D, Stockhause M, Yeston J. 2021. Recognizing the
value of software: a software citation guide. FI000Research 9:1257
DOI 10.12688/f1000research.26932.2.

Kendall A, Gal Y, Cipolla R. 2018. Multi-task learning using uncertainty to weigh losses for scene
geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 7482-7491.

Kriiger F, Schindler D. 2020. A literature review on methods for the extraction of usage statements
of software and data. Computing in Science & Engineering 22(1):26-38
DOI 10.1109/MCSE.2019.2943847.

LeeJ, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. 2019. BioBERT: a pre-trained biomedical
language representation model for biomedical text mining. Bioinformatics 36(4):1234-1240
DOI 10.1093/bioinformatics/btz682.

Li K, Lin X, Greenberg J. 2016. Software citation, reuse and metadata considerations: an
exploratory study examining lammps. Proceedings of the Association for Information Science and
Technology 53(1):1-10 DOI 10.1002/pra2.2016.14505301072.

Li K, Yan E. 2018. Co-mention network of R packages: scientific impact and clustering structure.
Journal of Informetrics 12(1):87-100 DOI 10.1016/j.j0i.2017.12.001.

Li K, Yan E, Feng Y. 2017. How is R cited in research outputs? Structure, impacts, and citation
standard. Journal of Informetrics 11(4):989-1002 DOI 10.1016/j.jo1.2017.08.003.

Loper E, Bird S. 2002. Nltk: the natural language toolkit. In: Proceedings of the ACL-02 Workshop
on Effective Tools and Methodologies for Teaching Natural Language Processing and
Computational Linguistics, ETMTNLP '02. Vol. 1. Stroudsburg: Association for Computational
Linguistics, 63-70 DOI 10.3115/1118108.1118117.

Lopez P, Du C, Cohoon], Ram K, Howison J. 2021. Mining software entities in scientific
literature: document-level ner for an extremely imbalance and large-scale task. In: Proceedings
of the 30th ACM International Conference on Information and Knowledge Management
(CIKM 21). Virtual Event, QLD. New York: ACM.

Ma X, Hovy E. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 1064-1074 DOI 10.18653/v1/P16-1101.

Malone J, Brown A, Lister AL, Ison J, Hull D, Parkinson H, Stevens R. 2014. The software
ontology (swo): a resource for reproducibility in biomedical data analysis, curation and digital
preservation. Journal of Biomedical Semantics 5(25):149 DOI 10.1186/2041-1480-5-25.

Manghi P, Bardi A, Atzori C, Baglioni M, Manola N, Schirrwagen J, Principe P. 2019. The
OpenAlIRE research graph data model. Available at https://graph.openaire.eu/.

Mayernik MS, Hart DL, Maull KE, Weber NM. 2017. Assessing and tracing the outcomes and
impact of research infrastructures. Journal of the Association for Information Science and
Technology 68(6):1341-1359 DOI 10.1002/asi.23721.

Miles A, Matthews B, Wilson M, Brickley D. 2005. Skos core: simple knowledge organisation for
the web. In: Proceedings of the 2005 International Conference on Dublin Core and Metadata
Applications: Vocabularies in Practice, Dublin Core Metadata Initiative (DCMI "05).

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 45/47

https://github.com/codemeta/codemeta
http://dx.doi.org/10.12688/f1000research.26932.2
http://dx.doi.org/10.1109/MCSE.2019.2943847
http://dx.doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1002/pra2.2016.14505301072
http://dx.doi.org/10.1016/j.joi.2017.12.001
http://dx.doi.org/10.1016/j.joi.2017.08.003
http://dx.doi.org/10.3115/1118108.1118117
http://dx.doi.org/10.18653/v1/P16-1101
http://dx.doi.org/10.1186/2041-1480-5-25
https://graph.openaire.eu/
http://dx.doi.org/10.1002/asi.23721
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

Nangia U, Katz DS. 2017. Understanding software in research: Initial results from examining
nature and a call for collaboration. In: 2017 IEEE 13th International Conference on e-Science
(e-Science). Piscataway: IEEE, 486-487 DOI 10.1109/eScience.2017.78.

OpenLink. 2021. Virtuoso open-source edition. Virtuoso version 07.20.3229 on Linux (x86_64-pc-
linux-gnu), Single Server Edition. Available at http://vos.openlinksw.com/dataspace/owiki/wiki/
VOS/VOSIndex?rev=7.

Pan X, Yan E, Cui M, Hua W. 2018. Examining the usage, citation, and diffusion patterns of
bibliometric mapping software: a comparative study of three tools. Journal of Informetrics
12(2):481-493 DOI 10.1016/j.j0i.2018.03.005.

Pan X, Yan E, Wang Q, Hua W. 2015. Assessing the impact of software on science: a bootstrapped
learning of software entities in full-text papers. Journal of Informetrics 9(4):860-871
DOI 10.1016/.j0i.2015.07.012.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S. 2019. Pytorch: an imperative style, high-performance deep
learning library. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Vancouver, Canada, 32:8026-8037.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in Python. Journal of Machine
Learning Research 12:2825-2830 DOI 10.5555/1953048.2078195.

Peroni S, Shotton D, Ashton J, Barton A, Gramsbergen E, Jacquemot MC. 2016. Datacite2rdf:
mapping datacite metadata schema 3.1 terms to rdf. DOI 10.6084/m9.figshare.2075356.v1.

R Core Team. 2021. R: a language and environment for statistical computing. Vienna: The R
Foundation for Statistical Computing. Available at http://www.R-project.org/.

Rehiifek R, Sojka P. 2010. Software framework for topic modelling with large corpora. In:
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta,
Malta: ELRA, 45-50.

Ruder S. 2017. An overview of multi-task learning in deep neural networks. ArXiv. Available at
https://arxiv.org/abs/1706.05098.

Russell PH, Johnson RL, Ananthan S, Harnke B, Carlson NE. 2018. A large-scale analysis of
bioinformatics code on GitHub. PLOS ONE 13(10):e0205898
DOI 10.1371/journal.pone.0205898.

Schindler D, Bensmann F, Dietze S, Kriiger F. 2021a. SoftwareKG-PMC. Available at https://doi.
0rg/10.5281/zenodo.5553737.

Schindler D, Bensmann F, Dietze S, Kriiger F. 2021b. Somesci—a 5 star open data gold standard
knowledge graph of software mentions in scientific articles. In: Proceedings of the 30th ACM
International Conference on Information and Knowledge Management (CIKM °21). Virtual
Event, QLD: Association for Computing Machinery DOI 10.1145/3459637.3482017.

Schindler D, Zapilko B, Kriiger F. 2020. Investigating software usage in the social sciences: a
knowledge graph approach. In: The Semantic Web, number 12123 in Lecture Notes in
Computer Science. Heraklion: Springer International Publishing, 271-286
DOI 10.1007/978-3-030-49461-2_16.

Smith AM, Katz DS, Niemeyer KE. 2016. Software citation principles. Peer] Computer Science
2:e86 DOI 10.7717/peerj-cs.86.

Stenetorp P, Pyysalo S, Topi¢ G, Ohta T, Ananiadou S, Tsujii J. 2012. BRAT: a web-based tool
for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 46/47

http://dx.doi.org/10.1109/eScience.2017.78
http://vos.openlinksw.com/dataspace/owiki/wiki/VOS/VOSIndex?rev=7
http://vos.openlinksw.com/dataspace/owiki/wiki/VOS/VOSIndex?rev=7
http://dx.doi.org/10.1016/j.joi.2018.03.005
http://dx.doi.org/10.1016/j.joi.2015.07.012
http://dx.doi.org/10.5555/1953048.2078195
http://dx.doi.org/10.6084/m9.figshare.2075356.v1
http://www.R-project.org/
https://arxiv.org/abs/1706.05098
http://dx.doi.org/10.1371/journal.pone.0205898
https://doi.org/10.5281/zenodo.5553737
https://doi.org/10.5281/zenodo.5553737
http://dx.doi.org/10.1145/3459637.3482017
http://dx.doi.org/10.1007/978-3-030-49461-2_16
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

PeerJ Computer Science

the European Chapter of the Association for Computational Linguistics. Avignon: Association for
Computational Linguistics, 102-107.

van Hage WR, with contributions from: Kauppinen T, Graeler B, Davis C, Hoeksema J,
Ruttenberg A, Bahls D. 2013. SPARQL: SPARQL client. R package version 1.16. Available at
https://rdrr.io/cran/SPARQL/.

Van Rossum G, Drake FL. 2009. Python 3 reference manual. Scotts Valley: CreateSpace.

Vrandeci¢ D. 2012. Wikidata. In: Proceedings of the 21st International Conference Companion on
World Wide Web - WWW 12 Companion. New York: ACM Press.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Franc¢ois R, Grolemund G, Hayes A,
Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Miiller K, Ooms J, Robinson
D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome
to the tidyverse. Journal of Open Source Software 4(43):1686 DOI 10.21105/joss.01686.

Wilder-James E. 2018. Description of a project. Ontology Specification for DOAP. Available at
https://github.com/ewilderj/doap/wiki.

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R,
Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T,
Gugger S, Drame M, Lhoest Q, Rush A. 2020. Transformers: state-of-the-art natural
language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Stroudsburg: Association for Computational
Linguistics, 38-45 DOI 10.18653/v1/2020.emnlp-demos.6.

XuJ, Kim S, Song M, Jeong M, Kim D, Kang J, Rousseau JF, Li X, Xu W, Torvik VI, Bu Y, Chen
G, Ebeid IA, Li D, Ding Y. 2020. Building a PubMed knowledge graph. Scientific Data 7(1):205
DOI 10.1038/s41597-020-0543-2.

Schindler et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.835 47/47

https://rdrr.io/cran/SPARQL/
http://dx.doi.org/10.21105/joss.01686
https://github.com/ewilderj/doap/wiki
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.1038/s41597-020-0543-2
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/

Submitted 16 July 2021
Accepted 21 January 2022
Published 7 February 2022

Corresponding author
Eitan Frachtenberg,
etc_26@yahoo.com

Academic editor
Daniel de Oliveira

Additional Information and
Declarations can be found on
page 21

DOl 10.7717/peerj-cs.887

© Copyright
2022 Frachtenberg

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Research artifacts and citations in
computer systems papers

Eitan Frachtenberg

Computer Science, Reed College, Portland, OR, United States of America

ABSTRACT

Research in computer systems often involves the engineering, implementation, and

measurement of complex systems software and data. The availability of these artifacts
is critical to the reproducibility and replicability of the research results, because system
software often embodies numerous implicit assumptions and parameters that are not
fully documented in the research article itself. Artifact availability has also been previ-
ously associated with higher paper impact, as measured by citations counts. And yet, the
sharing of research artifacts is still not as common as warranted by its importance. The
primary goal of this study is to provide an exploratory statistical analysis of the artifact-
sharing rates and associated factors in the research field of computer systems. To this
end, we explore a cross-sectional dataset of papers from 56 contemporaneous systems
conferences. In addition to extensive data on the conferences, papers, and authors, this
analyze dataset includes data on the release, ongoing availability, badging, and locations
of research artifacts. We combine this manually curated dataset with citation counts
to evaluate the relationships between different artifact properties and citation metrics.
Additionally, we revisit previous observations from other fields on the relationships

between artifact properties and various other characteristics of papers, authors, and

venue and apply them to this field. The overall rate of artifact sharing we find in this
dataset is approximately 30%, although it varies significantly with paper, author, and
conference factors, and it is closer to 43% for conferences that actively evaluated artifact
sharing. Approximately 20% of all shared artifacts are no longer accessible four years
after publications, predominately when hosted on personal and academic websites. Our
main finding is that papers with shared artifacts averaged approximately 75% more

citations than papers with none. Even after controlling for numerous confounding

covariates, the release of an artifact appears to increase the citations of a systems paper
by some 34%. This metric is further boosted by the open availability of the paper’s text.

Subjects Data Science, Databases, Digital Libraries, World Wide Web and Web Science

Keywords Reproducible research, Computer systems, Software artifacts, Bibliometrics, Open
access, Software repositories, FAIR

INTRODUCTION

Many scientific experimental results cannot be successfully repeated or reproduced,
leading to the so-called “reproducibility crisis” (Baker, 2016b; Van Noorden, 2015).
An experimental result is not fully established unless it can be independently
reproduced (Stodden, 2008), and an important step towards this goal is the sharing of
artifacts associated with the work, including computer code (ACM, 2020; Collberg &
Proebsting, 2016; Fehr et al., 2016). The availability of experimental artifacts is not only

How to cite this article Frachtenberg E. 2022. Research artifacts and citations in computer systems papers. Peer] Comput. Sci. 8:e887
http://doi.org/10.7717/peerj-cs.887

https://peerj.com/computer-science
mailto:etc_26@yahoo.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.887
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

crucial for reproducibility, but it also directly contributes to the transparency, reusability,
and credibility of the work (Feitelson, 2015). Artifacts additionally play an important role in
drive toward open science, which has gained substantial momentum in computer science
(CS) (Heumiiller et al., 2020).

Given the central role of research artifacts in reproducibility, it is not surprising to find
major initiatives to increase artifact sharing and evaluation. As Childers and Chrysanthis
wrote in 2017:

Experimental computer science is far from immune [from the reproducibility crisis],
although it should be easier for CS than other sciences, given the emphasis on
experimental artifacts, such as source code, data sets, workflows, parameters, etc.
The data management community pioneered methods at ACM SIGMOD 2007 and
2008 to encourage and incentivize authors to improve their software development and
experimental practices. Now, after 10 years, the broader CS community has started
to adopt Artifact Evaluation (AE) to review artifacts along with papers (Childers ¢
Chrysanthis, 2017).

Unfortunately, the sharing and evaluation of artifacts are still not as commonplace as
warranted by their importance. One challenge in addressing this topic is that definitions
and expectations for research artifacts are not always clear. The Association of Computing
Machinery (ACM) defines a paper’s artifact as follows:

By “artifact” we mean a digital object that was either created by the authors to be used
as part of the study or generated by the experiment itself. For example, artifacts can be
software systems, scripts used to run experiments, input datasets, raw data collected in
the experiment, or scripts used to analyze results (ACM, 2020).

This paper aims to shed some light on artifact sharing in one particular field of CS,
namely computer systems (or “systems” for short). Systems is a large research field with
numerous applications, used by some of the largest technology companies in the world.
For the purpose of this study, we define systems as the study and engineering of concrete
computing systems, which includes research topics such as: operating systems, computer
architectures, data storage and management, compilers, parallel and distributed computing,
and computer networks.

The study of these topics often involves the implementation, modification, and
measurement of system software itself. System software is software that is not on its own
a user-facing application, but rather software that manages system resources or facilitates
development for the actual applications, such as compilers, operating system components,
databases, and middleware. System software can be fairly complex and tightly coupled to
the system it is designed to run on.

Research artifacts, and especially software artifacts, are therefore paramount to the
evaluation and reproduction of systems research. Whereas in other fields of science—or
even CS—research results can often be replicated from the original equations or datasets,
systems software can embody countless unstated assumptions in the code and parameters.
The significance is that reproducing research findings by recreating its artifacts from the

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

terse descriptions in a paper is often unfeasible, rendering software artifacts all that more
important.

The hypothesis of this paper is therefore that because of its importance to reproducibility,
artifacts sharing in systems significantly increases a paper’s influence, as measured by
citations. Citations are not only a widely used metric of impact for papers and researchers
but also an indirect measure of the work’s quality and usefulness, which presumably are
both helped by the availability of artifacts. Citations may also stand in as proxy metrics for
the transparency, reusability, reproducibility, and credibility of papers—if we assume that
any of these qualities encourage subsequent researchers to cite the original work. The main
observational goal of this paper is to evaluate the quantitative association between artifacts
availability and citations in the research field of computer systems. An additional goal
of this study is an exploratory data analysis of associated factors to identify relationships
between the availability of research artifacts in systems research papers and other statistical
properties of these papers.

Study design and main findings

To evaluate our main hypothesis, this study uses an observational, cross-sectional approach,
analyzing 2,439 papers from a large subset of leading systems conferences. The study
population comes from a hand-curated collection of 56 peer-reviewed systems and related
conferences from a single publication year (2017). Among other characteristics, it includes
manually collected data on artifact availability and paper citation counts 3.5 years from
publication, as detailed in the next section. By comparing the post-hoc citations of papers
with released artifacts to those with none, we find that we can reject the null hypothesis that
artifact availability does not impact paper citations. Even after controlling for demographic,
paper, and conference factors using a multilevel mixed-effects model, papers with artifacts
still receive 34% more citations on average than papers without.

Our expansive dataset also offers the opportunity for a descriptive and correlational
study of the following additional questions. These questions are ancillary to the main
research question of the relationship between artifacts and citations. Nevertheless, they
may interest the reader and provide a fuller context and quantitative understanding of the
state of artifact sharing in the field, and are provided as secondary contributions. These
questions, and a short answer to each, are listed here and are elaborated in the results
section:

1. What is the ratio of papers in systems for which artifacts are available? (Approximately
30%.)
How many of these artifacts are actually linked from the paper? (Approximately 80%.)

3. How many of these artifacts have expired since publication? What characterizes these
artifacts? (Approximately 13% can no longer be found, mostly from academic and
personal host pages.)

4. What are the per-conference factors and differences that affect the ratio of artifact
sharing? (The most influential factor appears to be an artifact evaluation process.
Approximately 57% of papers in these six conferences shared artifacts.)

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

5. Does conference prestige affect artifact availability? (Papers that release artifacts tend
to appear in more competitive conferences.)

6. What is the relationship between artifact accessibility and paper accessibility? (Papers
with shared artifacts are also more likely to have an eprint version freely available
online, and sooner than non-artifact papers.)

7. What is the relationship between artifact accessibility and paper awards?
(Approximately 39% of papers with awards shared artifacts vs. 27% in the rest.)

8. Are there any textual properties of the paper that can predict artifact availability?
(Papers that share artifacts tend to be longer and incorporate a computer system
moniker in their titles.)

As a final contribution, this study provides a rich dataset of papers (Frachtenberg, 2021),
tagged with varied metadata from multiple sources, including for the first time artifact
properties (described next). Since comprehensive data on papers with artifacts is not always
readily available, owing to the significant manual data collection involved, this dataset can
serve as the basis of additional studies.

The rest of this paper is organized as follows. The next section presents in detail the
dataset, methodology, and limitations of our study. An extensive set of descriptive and
explanatory statistics is presented in the results section and then used to build a mixed-
effects multilevel regression model for citation count. The discussion section presents
potential implications from these findings, as well as potential threats to the validity of this
analysis. These findings are then placed in historical and cross-disciplinary context in the
related-work section. Finally, the concluding section summarizes the main findings of this

study and suggests some future research directions.

DATA AND METHODS

The most time-consuming aspect of this study was the collection and cleaning of the
data. This section describes the data selection and cleaning process for paper, artifact, and
citation data.

The primary dataset we analyze comes from a hand-curated collection of 56 peer-
reviewed systems and related conferences from a single publication year (2017), to reduce
time-related variance. Conference papers were preferred over journal articles because in
CS, and in particular, in its more applied fields such as systems, original scientific results
are typically first published in peer-reviewed conferences (Patterson, Snyder ¢ Ullman,
1999; Patterson, 2004):health, and then possibly in archival journals, sometimes years
later (Vrettas ¢ Sanderson, 2015). These conferences were selected to represent a large
cross-section of the field, with different sizes, competitiveness, and subfields (Table 1).
Such choices are necessarily subjective, based on the author’s experience in the field. But
they are aspirationally both wide enough to represent the field well and focused enough to
distinguish it from the rest of CS.

A few of these conferences, such as MobiCom and SLE, specifically encouraged
artifacts in their call-for-papers or websites. Four conferences—SC, OOPSLA, PLD],
and SLE—archived their artifacts in the ACM’s digital library. In addition to general

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Table 1 System conferences, including start date, number of published papers, total number of named authors, and acceptance rate.

Conference Date Papers Authors Acceptance Conference Date Papers Authors Acceptance
ICDM 2017-11-19 72 269 0.09 PACT 2017-09-11 25 89 0.23
KDD 2017-08-15 64 237 0.09 SPAA 2017-07-24 31 84 0.24
SIGMETRICS ~ 2017-06-05 27 101 0.13 MASCOTS 2017-09-20 20 75 0.24
SIGCOMM 2017-08-21 36 216 0.14 CCGrid 2017-05-14 72 296 0.25

SP 2017-05-22 60 287 0.14 PODC 2017-07-25 38 101 0.25
PLDI 2017-06-18 47 173 0.15 CLOUD 2017-06-25 29 110 0.26
NDSS 2017-02-26 68 327 0.16 Middleware 2017-12-11 20 91 0.26
NSDI 2017-03-27 42 203 0.16 EuroPar 2017-08-30 50 179 0.28

IMC 2017-11-01 28 124 0.16 PODS 2017-05-14 29 91 0.29
ISCA 2017-06-24 54 295 0.17 ICPP 2017-08-14 60 234 0.29
SOSP 2017-10-29 39 217 0.17 ISPASS 2017-04-24 24 98 0.30
ASPLOS 2017-04-08 56 247 0.18 Cluster 2017-09-05 65 273 0.30

CCS 2017-10-31 151 589 0.18 OOPSLA 2017-10-25 66 232 0.30
HPDC 2017-06-28 19 76 0.19 HotOS 2017-05-07 29 112 0.31
MICRO 2017-10-16 61 306 0.19 ISC 2017-06-18 22 99 0.33
MobiCom 2017-10-17 35 164 0.19 HotCloud 2017-07-10 19 64 0.33
ICAC 2017-07-18 14 46 0.19 Hotl 2017-08-28 13 44 0.33

SC 2017-11-13 61 325 0.19 SYSTOR 2017-05-22 16 64 0.34
CoNEXT 2017-12-13 32 145 0.19 ICPE 2017-04-22 29 102 0.35
SIGMOD 2017-05-14 96 335 0.20 HotStorage 2017-07-10 21 94 0.36
PPoPP 2017-02-04 29 122 0.22 IISWC 2017-10-02 31 121 0.37
HPCA 2017-02-04 50 215 0.22 CIDR 2017-01-08 32 213 0.41
EuroSys 2017-04-23 41 169 0.22 VEE 2017-04-09 18 85 0.42

ATC 2017-07-12 60 279 0.22 SLE 2017-10-23 24 68 0.42
HiPC 2017-12-18 41 168 0.22 HPCC 2017-12-18 77 287 0.4
SIGIR 2017-08-07 78 264 0.22 HCW 2017-05-29 7 27 0.47
FAST 2017-02-27 27 119 0.23 SOCC 2017-09-25 45 195 Unknown
IPDPS 2017-05-29 116 447 0.23 IGSC 2017-10-23 23 83 Unknown

encouragement and archival, six conferences specifically offered to evaluate artifacts by a

technical committee: OOPSLA, PACT, PLDI, PPoPP, SC, and SLE.

For each conference, we gathered various statistics from its web page, proceedings, or

directly from its chairs. We also collected historical conference metrics from the websites of
the ACM, the Institute of Electrical and Electronics Engineers (IEEE), and Google Scholar
(GS), including past citations, age, and total publications, and downloaded all papers in

PDF format. The dataset includes extensive data on the authors and the textual properties

of the papers, and the relevant features are discussed in the next section.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887

5/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

We are also interested in measuring the post-hoc impact of each paper, as approximated
by its number of citations. Citation metrics typically lag publication by a few months
or years, allowing for the original papers to be discovered, read, cited, and then the
citations themselves published and recorded. The time duration since these papers had
been published, approximately 3.5 years, permits the analysis of their short-to-medium
term impact in terms of citations. In practice, this duration is long enough that only 46
papers (1.89%) have gathered no citations yet.

For this study, the most critical piece of information on these papers is their artifacts.
Unfortunately, most papers included no standardized metadata with artifact information,
so it had to be collected manually from various sources, as detailed next.

The only existing form of standardized artifact metadata was for the subset of conferences
organized by the ACM with artifact badge initiatives. In the proceedings page in the ACM’s
digital library of these conferences, special badges denote which papers made artifacts
available, and which papers had artifacts evaluated (for conferences that supported either
badge). In addition, the ACM digital library also serves as a repository for the artifacts, and
all of these ACM papers included a link back to the appropriate web page with the artifact.

Unfortunately, most papers in this dataset were not published by the ACM or had
no artifact badges. In the absence of artifact metadata or an automated way to extract
artifact data, these papers required a manual scanning of the PDF text of every paper in
order to identify such links. When skimming these papers, several search terms were used
to assist in identifying artifacts, namely: “github”, “gitlab”, “bitbucket”, “sourceforge”,

M

and “zenodo” for repositories; variants of “available”, “open source”, and “download”
for links; and variations of “artifact”, “reproducibility”’, and “will release” for indirect
references. Some papers make no mention of artifacts in the text, but we can still discover
associated artifacts online by searching github.com for author names, paper titles, and
especially unique monikers used in the paper to identify their software.

We also recorded for each paper: whether the paper had an “artifact available” badge or
“artifact evaluated” badge, whether a link to the artifact was included in the text, the actual
URL for the artifact, and the latest date that this artifact was still found intact online. All
of the searches for these artifacts are recent, so from the last field above we can denote the
current status of an artifact as either extant or expired. From the availability of a URL, we
can classify an artifact as released or unreleased (the latter denoting papers that promised
an artifact but no link or repository was found). And from the host domain of the URL we
can classify the location of the artifact as either an Academic web page, the ACM digital
library, a Filesharing service such as Dropbox or Google, a specialized Repository such as
github.com, Other (including .com and .org web sites), or NA.

In all, 722 papers in our dataset (29.6%) had an identifiable or promised artifact,
predominantly as software but occasionally as data, configuration, or benchmarking files.
Artifacts that had been included in previous papers or written by someone other than the
paper’s authors were excluded from this count. This statistic only reflects artifact availability,
not quality, since evaluating artifact quality is both subjective and time-consuming. It is
worth noting, however, that most of the source-code repositories in these artifacts showed

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

no development activity—commits, forks, or issues—after the publication of their paper,
suggesting limited activity for the artifacts alone.

Data-collection procedure

The following list summarizes the data-collection process for reproducibility purposes.

1. Visit the website and proceedings of each conference and record general information
about the conference: review policy, open-access, rebuttal policy, acceptance rate,
program committee, efc.

2. Also from these sources, manually copy the following information for each paper: title,
author names, and award status (as noted on the website and in proceedings).

3. Double-check all paper titles and author names by comparing conference website and
post-conference proceedings. Also compare titles to GS search results and ensure all
papers are (eventually) discovered by GS with the title corrected as necessary. Finally,
check the same titles and author names against the Semantic Scholar database and
resolve any discrepancies.

4. Download the full text of each paper in PDF format via institutional digital library
access.

5. Record all papers with artifact badges. These are unique to the ACM conferences in
our dataset and are clearly shown both in the ACM digital library and in the PDF copy
of such papers.

6. Collect and record GS citation counts for each paper as close to possible to exactly 42
months after the conference’s opening day. The dataset includes citation counts for
each paper across multiple time points, but the analysis in this paper only uses one data
point per paper, closest to the selected duration.

7. Record artifact availability and links for papers. This is likely the most time-consuming
and error-prone process in the preparation of the data specific to this study and involves
the following steps: Using a search tool on each document (“pdfgrep”) on each of the
search terms listed above and perusing the results to identify any links or promises to
artifacts; skimming or reading papers with negative results to ensure such a link was
not accidentally missed; Finally, searching github.com for specific system names if a
paper describes one, even if not linked directly from the paper.

Statistics

For statistical testing, group means were compared pairwise using Welch’s two-sample
t-test; differences between distributions of two categorical variables were tested with X test;
and comparisons between two numeric properties of the same population were evaluated
with Pearson’s product-moment correlation. All statistical tests are reported with their
p-values.

Ethics statement
All of the data for this study was collected from public online sources and therefore did
not require the informed consent of the papers’ authors.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Table2 Class of artifact URLs. ‘NA’ locations indicate expired or unreleased URLs.

Location Count
Repository 477
Academic 81
Other 67
ACM 44
Filesharing 6

NA 47

Code and data availability
The complete dataset and metadata are available in the supplementary material, as well as
a github repository (Frachtenberg, 2021).

RESULTS

Descriptive statistics

Before addressing our main research question, we start with a simple characterization of
the statistical distributions of artifacts in our dataset. Of the 722 papers with artifacts, we
find that about 79.5% included an actual link to the artifact in the text. The ACM digital
library marked 88 artifact papers (12.2%) with an “Artifact available” badge, and 89 papers
(12.3%) with an “Artifact evaluated” badge. The majority of artifact papers (86.7%) still
had their artifacts available for download at the time of this writing. This ratio is somewhat
similar to a comparable study that found that 73% of URLs in five open-access (OA)
journals were live after five years (Saberi & Abedi, 2012). Of the 722 papers that promised
artifacts, 47 appear to have never released them. The distribution of the location of the
accessible artifacts is shown in Table 2, and is dominated by Github repositories.

Looking at the differences across conferences, Fig. 1 shows the percentage of papers
with artifacts per conference, ranging from 0% for ISCA, IGSC, and HCW to OOPSLA’s
78.79% (mean: 27.22%, SD: 19.32%). Unsurprisingly, nearly all of the conferences where
artifacts were evaluated are prominent in their relatively high artifact rates. Only PACT
stands out as a conference that evaluated artifacts but had a lower-than-average overall
ratio of papers with artifacts (0.24). The MobiCom conference also shows a distinctly
low ratio, 0.09, despite actively encouraging artifacts. It should be noted, however, that
many papers in PACT and MobiCom are hardware-related, where artifacts are often
unfeasible. The same is true for a number of other conferences with low artifact ratios, such
as ISCA, HPCA, and MICRO. Also worth noting is the fact that ACM conferences appear
to attract many more artifacts than IEEE conferences, although the reasons likely vary on
a conference-by-conference basis.

Another indicator for artifact availability is author affiliation. As observed in other
systems papers, industry-affiliated authors typically face more restrictions for sharing
artifacts (Collberg ¢ Proebsting, 2016), likely because the artifacts hold commercial or
competitive ramifications (Ince, Hatton ¢» Graham-Cumming, 2012). In our dataset, only

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

OOPSLA OO n=66

PLDI - n=47

SOSP OO] n=39

SLE | n=24

PPoPP OO] n=29

ATC] n=60

KDD 1 n=64

SC O] n=61

FAST] n=27
CCS - OO n=151

IMC OO n=28

HPDC 1 n=19

EuroSys - O OO n=41

ICPE 1 n=29

~ICDM OO] n=72
Middleware - 1 n=20
0] n=60

SO OO] n=45
SIGCOMM] n=36
NSD I n=42

NDSS 1 n=68
ASPLOS] n=56

SIGIR 1 n=78

ISC - n=22

® ISPASS] n=24
o CCGrid | n=72
S PACT] n=25
= EuroPar] n=50
Q VEE 1] n=18
c CID 1 n=32
Q SIGMOD 1 n=96
O Cluster |— n=65
SYSTOR] n=16
SIGMETRICS [] n=27
IPDPS] n=116

1ISWC] n=31
HotCloud [] n=19

ICPP] n=60

ICAC [] n=14

CLOUD [] n=29

MICRO 1 n=61

HPCA [] n=50
MASCOTS [] n=20
HotStora)%e [] n=21
CoNEXT | n=32
MobiCom [] n=35
HPCC [] n=77

Hotl [] n=13

HiPC] n=41

PODS] n=29

SPAA [n=31

HotOS [] n=29

PODC [] n=38

ISCA n=54

IGSC n=23

HCW n=7
0 25 50 75 100

Percent of papers with artifacts

Organization [acm [ieee [usenix [other

Figure 1 Papers with artifact by conference.

Full-size & DOI: 10.7717/peerjcs.887/fig-1

19.3% of the 109 papers where all authors had an industry affiliation also released an
artifact, compared to 28.1% for the other papers (x2= 3.6, p=0.06).

1At the time of this writing during summer

2021, the papers from December 2017 had Relationships to citations

been public for 3.5 years, so this 42-month . . . I

duration was selected for all papers to Turning now to our main research hypothesis, we ask: does the open availability of an

normalize the comparison. artifact affect the citations of a paper in systems? To answer this question, we look at the
distribution of citations for each paper 42 months after its conference’s opening day, when

its proceedings presumably were published'.

Frachtenberg (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.887 L I - T

https://peerj.com
https://doi.org/10.7717/peerjcs.887/fig-1
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

250

200 —

150]

Count

100 -

50

0 1 2 3 5 10 20 30 50 100 200 300 500 1000 2000
Citations

Figure 2 Distribution of paper citations 42 months after publication (log-scale).
Full-size Gal DOI: 10.7717/peerjcs.887/fig-2

Figure 2 shows the overall paper distribution as a histogram, while Fig. 3 breaks down
the distributions of artifact and non-artifact papers as density plots.

Citations range from none at all (49 papers) to about a thousand, with two outlier papers
exceeding 2,000 citations (Carlini & Wagner, 2017; Jouppi et al., 2017). The distributions
appear roughly log-normal. The mean citations per paper with artifacts released was
50.7, compared to 29.1 with none (¢t =4.07, p < 10~*). Since the citation distribution is
so right-skewed, it makes sense to also compare the median citations with and without
artifacts (25 vs. 13, W = 767739, p < 10~). Both statistics suggest a clear and statistically
significant advantage in citations for papers that released an artifact. Likewise, the 675
papers that actually released an artifact garnered more citations than the 47 papers that did
promise an artifact that could later not be found (t =3.82, p < 1073), and extant artifacts
fared better than expired ones (t =4.17, p < 107%).

In contradistinction, some positive attributes of artifacts were actually associated with
fewer citations. For example, the mean citations of the 573 papers with a linked artifact,
47, was much lower than the 71.3 mean for the 102 papers with artifacts we found using a
Web search (t = —2.02, p=10.04; W = 22865, p < 1073). Curiously, the inclusion of a link
in the paper, presumably making the artifact more accessible, was associated with fewer
citations.

Similarly counter-intuitive, papers that received an “Artifact evaluated” badge fared
worse in citations than artifact papers who did not (t =—3.32, p < 0.01; W = 11932.5,

p =0.03). Papers who received an “Artifact available” badge did fare a little worse than
artifact papers who did not (t =—1.45, p=0.15; W = 26050.5, p = 0.56). These findings

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 10/26

https://peerj.com
https://doi.org/10.7717/peerjcs.887/fig-2
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

0.75
>0.50
‘n
C
(]
[a)

0.25

0.00 - S

1 10 100 1000
Citations
Artifact released D FALSE TRUE

Figure 3 Density plot of paper citations 42 months after publication (log-scale).
Full-size &l DOI: 10.7717/peerjcs.887/fig-3

Table 3 Median citations by class of artifact URLSs for extant artifacts.

Location Count Median citations
Repository 477 25
Academic 81 24
Other 67 27
ACM 44 15
Filesharing 6 35

appear to contradict the premise that such badges are associated with increased artifact
sharing, as has been found in other fields (Baker, 2016a).

Finally, we can also break down the citations per paper grouped by the type of location
for the artifact and by its organization, examining medians because of the outsize effects of
outliers (Table 3). The three major location categories do not show significant differences

in citations, and the last two categories may be too small to ascribe statistical significance
to their differences.

Accessibility

One commonly used set of principles to assess research software artifacts is termed FAIR:
findability, accessibility, interoperability, and reusability (Hong et al., 2021; Wilkinson et
al., 2016). We have overviewed the findability aspect of artifacts in the statistics of how
many of these were linked or found via a Web search. The reusability and interoperability
of artifacts unfortunately cannot be assessed with the current data. But we can address some
of our secondary research questions by analyzing the accessibility of artifacts in depth.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 11/26

https://peerj.com
https://doi.org/10.7717/peerjcs.887/fig-3
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

As mentioned previously, 13.3% of released artifacts are already inaccessible, a mere
A2 3.5 years after publication. Most of the artifacts in our dataset were published in
code repositories, predominantly github, that do not guarantee persistent access or even
universal access protocols such as digital object identifiers (DOI). However, only 2.3% of
the “Repository” artifacts were inaccessible. In contrast, 22.2% of the artifacts in university
pages have already expired, likely because they had been hosted by students or faculty that
have since moved elsewhere. Also, a full half of the artifacts on file-sharing sites such as
Dropbox or Google Drive are no longer there, possibly because these are paid services or
free to a limited capacity, and can get expensive to maintain over time.

Accessibility is also closely related to the findability of the artifact, which in the absence of
artifact DOIs in our dataset, we estimate by looking at the number of papers that explicitly
link to their artifacts. The missing (expired) artifacts consisted of a full 31.1% of the papers
with no artifact link, compared to only 8.7% for papers that linked to them (x? =49.15,
p<107).

Another related question to artifact accessibility is how accessible is the actual paper that
introduced the artifact, which may itself be associated with higher citations (Gargouri et al.,
2010; McCabe & Snyder, 2015; McKiernan et al., 2016; Tahamtan, Afshar & Ahamdzadeh,
2016). A substantial proportion of the papers (23.1%) were published in 15 open-access
conferences. Other papers have also been released openly as preprints or via other means.
One way to gauge the availability of the paper’s text is to look it up on GS and see if an
accessible version (eprint) is linked, which was recorded in our dataset. Of the 2,439 papers,
91.8% displayed at some point an accessible link to the full text on GS. Specifically, of the
papers that released artifacts, 96.7% were associated with an eprint as well, compared to
90% of the papers with no artifacts (x> =29, p <1077).

Moreover, our dataset includes not only the availability of an eprint link on GS, but
also the approximate duration since publication (in months) that it took GS to display
this link, offering a quantitative measure of accessibility speed. It shows that for papers
with artifacts, GS averaged approximately 4 months post-publication to display a link to
an eprint, compared to 5.8 months for papers with no artifacts (t = —5.48, p < 1077).
Both of these qualitative and quantitative differences are statistically significant, but
keep in mind that the accessibility of papers and artifacts are not independent: some
conferences that encouraged artifacts were also open-access, particularly those with the
ACM. Another dependent covariate with accessibility is citations; several studies suggested
that accessible papers are better cited (Bernius ¢ Hanauske, 2009; Niyazov et al., 2016;
Snijder, 2016), although others disagree (Calver ¢ Bradley, 2010; Davis ¢ Walters, 2011;
McCabe & Snyder, 2015). This dependence may explain part of the higher citability of
papers with artifacts, as elaborated next.

Covariate analysis
Having addressed the relationships between artifacts and citations, we can now explore
relationships between additional variables from this expansive dataset.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 12/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Awards

Many conferences present competitive awards, such as “best paper”, “best student paper”,
“community award”, efc. Of the 2,439 total papers, 4.7% received at least one such award.
Papers with artifacts are disproportionately represented in this exclusive subset (39.5% vs.
27.1% in non-award papers; x2=7.71, p<0.01).

Again, it is unclear whether this relationship is causal since the two covariates are
not entirely independent. For example, a handful of awards specifically evaluated the
contribution of the paper’s artifact. Even if the relationship is indeed causal, its direction
is also unclear, since 20% of award papers with artifacts did not link to it in the paper. It is
possible that these papers released their artifacts after winning the award or because of it.

Textual properties

Some of the textual properties of papers can be estimated from their full text using simple
command-line tools. Our dataset includes three such properties: the length of each paper
in words, the number of references it cites, and the existence of a system’s moniker in the
paper’s title.

The approximate paper length in words and the number of references turn out to be
positively associated with the release of an artifact. Papers with artifacts average more
pages than papers without (13.98 vs. 12.4; t =8.24, p < 10~?), more words (11757.36 vs.
10525.22; t =7.86, p < 107?), and more references (32.31 vs. 28.71; t =5.25, p < 107°).
Keep in mind, however, that longer papers also correspond to more references (r = 0.48,
p <107?), and are further confounded with specific conference factors such as page limits.

As previously mentioned, many systems papers introduce a new computer system, often
as software. Sometimes, these papers name their system by a moniker, and their title starts
with the moniker, followed by a colon and a short description (e.g., “Widget: An Even
Faster Key-Value Store”). This feature is easy to extract automatically for all paper titles.

We could hypothesize that a paper that introduces a new system, especially a named
system, would be more likely to include an artifact with the code for this system, quite likely
with the same repository name. Our data support this hypothesis. The ratio of artifacts
released in papers with a labeled title, 41.9%, is nearly double that of papers without a
labeled title, 22.8% (x> =84.23, p < 1077).

The difficulty to ascribe any causality to these textual relationships could mean that
there is little insight to be gained from them. But they can clue the paper’s reader to the
possibility of an artifact, even if one is not linked in the paper. Indeed, they accelerated the
manual search for such unlinked artifacts during the curation of the data assisted for this
study.

Conference prestige
Next, we look at conference-specific covariates that could represent how well-known or
competitive a conference is. In addition to textual conference factors, these conference
metrics may also be associated with higher rates of artifact release.

Several proxy metrics for prestige appear to support this hypothesis. Papers with released
artifacts tend to appear in conferences that average a lower acceptance rate (0.21 vs. 0.24;
t=—-628,p< 10~?), more paper submissions (360.5 vs. 292.45; t = 6.33, p < 1079),

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 13/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

higher historical mean citations per paper (16.6 vs. 14.96; t = 3.09, p < 0.01), and a
higher h5-index from GS metrics (46.04 vs. 41.04; t =6.07, p < 10~8). Also note that
papers in conferences that offered some option for author response to peer review (often in
the form of a rebuttal) were slightly more likely to include artifacts, perhaps as a response
to peer review (x%=2.03, p=0.15).

To explain these relationships, we might hypothesize that a higher rate of artifact
submission would be associated with more reputable conferences, either because artifact
presence contributes to prestige, or because more rigorous conferences are also more likely
to expect such artifacts. Observe, however, that some of the conferences that encourage
or require artifacts are not as competitive as the others. For example, OOPSLA, with the
highest artifact rate, had an acceptance rate of 0.3, and SLE, with the fourth-highest artifact
rate, had an acceptance rate of 0.42. The implication here is that it may not suffice for a
conference to actively encourage artifacts for it to be competitive, but a conference that
already is competitive may also attract more artifacts.

Regression model

Finally, we combine all of these factors to revisit in depth our primary research interest: the
effect of artifact sharing on citations. We already observed a strong statistical association
between artifact release and higher eventual citations. As cautioned throughout this study,
such associations are insufficient to draw causal conclusions, primarily because there
are many confounding variables, most of which relating to the publishing conference.
These confounding factors could provide a partial or complete statistical explanation to
differences in citations beyond artifact availability.

In other words, papers published in the same conference might exhibit strong
correlations that interact or interfere with our response variable. One such factor affecting
paper citations is time since publication, which we control for by measuring all citations at
exactly the same interval, 42 months since the conference’s official start. Another crucial
factor is the field of study—which we control for by focusing on a single field—while
providing a wide cross-section of the field to limit the effect of statistical variability.

There are also numerous less-obvious paper-related factors that have shown positive
association with citations, such as review-type studies, fewer equations, more references,
statistically significant positive results, papers’ length, number of figures and images, and
even more obscure features such as the presence of punctuation marks in the title. We can
attempt to control for such confounding variables when evaluating associations by using a
multilevel model. To this end, we fit a linear regression model of citations as a function of
artifact availability, and then add predictor variables as controls, observing their effect on
the main predictor. The response variable we model for is In(citations) instead of citations,
because of the long tail of their distribution. We also omit the 49 papers with zero citations
to improve the linear fit with the predictors.

In the baseline form, fitting a linear model of the log-transformed citations as a function
of only artifact released yields an intercept (baseline log citations) of 2.6 and a slope of 0.59,
meaning that releasing an artifact adds approximately 81% more citations to the paper, after
exponentiation. The p-value for this predictor is exceedingly low (less than 2 x 107'¢) but

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

ZPapers with no eprint available at the time
of this writing were assigned an arbitrary
time to eprint of 1,000 months, but the
regression analysis was not particularly
sensitive to this choice.

3Note that the past publication counts
and h-index are correlated (r = 0.6),
(p < 107?), so one may cancel the other
out.

the simplistic model only explains 4.61% of the variance in citations (Adjusted R = 0.046).
The Bayesian Information Criterion (BIC) for this model is 7693.252, with 2388 degrees
of freedom (df).

We can now add various paper covariates to the linear model in an attempt to get
more precise estimates for the artifact released predictor, by iteratively experimenting
with different predictor combinations to minimize BIC using stepwise model selection
(Garcia-Portugués, 2021, Ch. 3). The per-paper factors considered were: paper length
(words), number of coauthors, number of references, colon in the title, award given,
and accessibility speed (months to eprint”).

It turns out that all these paper-level factors except award given have a statistically
significant effect on citations, which brings the model to an increased adjusted R* value of
0.285 and a BIC of 7028.07 (df =2,380). However, the coefficient for artifact released went
down to 0.35 (42% relative citation increase) with an associated p-value of 3.8 x 10713,

Similar to paper variables, some author-related factors such as their academic reputation,
country of residence, and gender have been associated with citation count (Tahamtan,
Afshar & Ahamdzadeh, 2016). We next enhance our linear model with the following
predictor variables (omitting 451 papers with NA values):

e Whether all the coauthors with a known affiliation came from the same country (Puuska,
Muhonen ¢ Leino, 2014).

e Is the lead author affiliated with the United States (Gargouri et al., 2010; Peng ¢ Zhu,
2012)?

e Whether any of the coauthors was affiliated with one of the top 50 universities per
www.topuniversities.com (27% of papers) or a top company (if any author was affiliated
with either (Google, Microsoft, Yahoo!, or Facebook: 18% of papers), based on the
definitions of a similar study (Tomkins, Zhang ¢» Heavlin, 2017).

e Whether all the coauthors with a known affiliation came from industry.

e The gender of the first author (Frachtenberg ¢ Kaner, 2021).

e The sum of the total past publications of all coauthors of the paper (Bjarnason ¢
Sigfusdottir, 2002).

e The maximum h-index of all coauthors (Hurley, Ogier ¢ Torvik, 2014).

Only the maximum h-index and top-university affiliation had statistically significant
coefficients, but hardly affected the overall model.” These minimal changes may not justify
the increased complexity and reduced data size of the new model (because of missing data),
so for the remainder of the analysis, we ignore author-related factors and proceed with the
previous model.

We can now add the last level: venue factors. Conference (or journal) factors—such as
the conference’s own prestige and competitiveness—can have a large effect on citations, as
discussed in the previous section. Although we can approximate some of these factors with
some metrics in the dataset, there may also be other unknown or qualitative conference
factors that we cannot model. Instead, to account for conference factors we next build a
mixed-effects model, where all the previously mentioned factors become fixed effects and
the conference becomes a random effect (Roback ¢ Legler, 2021, Ch. 8).

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 15/26

https://peerj.com
www.topuniversities.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Table 4 Estimated parameters for final multilevel mixed-effects model of In(citations).

Factor Coefficient p-value
Intercept 1.74166 6.6e—31
Artifact released 0.29357 3.6e—10
Award given 0.00002 4.7e—02
Months to eprint —0.00048 8.8e—09
References number 0.00907 1.3e—08
Coauthors number 0.06989 1.6e—19
Colon in title 0.13369 1.4e—03

This last model does indeed reduce the relative effect of artifact release on citations to a
coefficient of 0.29 (95% confidence interval: 0.2-0.39). But this coefficient still represents
a relative citation increase of about a third for papers with released artifacts (34%), which
is substantial. We can approximate a p-value for this coefficient via Satterthwaite’s degrees
of freedom method using R’s 1lmerTest package (Kuznetsova, Brockhoff ¢ Christensen,
2017), which is also statistically significant at 3.5825 x 107'°, The parameters for this final
model are enumerated in Table 4. The only difference in paper-level factors is that award
availability has replaced word count as a significant predictor, but realistically, both have a
negligible effect on citations.

DISCUSSION

Implications

The regression model described in the preceding section showed that even with multiple
controlling variables we observe a strong association between artifact release and citations.
We can therefore ask, does this association allow for any causal or practical inferences? This
association may still not suffice to claim causation due to hidden variables (Lewis, 2018),
but it does support the hypothesis that releasing artifacts can indeed improve the prospects
of a systems research paper to achieve wider acceptance, recognition, and scientific impact.

One implication of this model is that even if we assume no causal relation between
artifact sharing and higher citation counts, the association is strong enough to justify a
change in future scientometric studies of citations. Such studies often attempt to control
for various confounders when attempting to explain or predict citations, and this strong
link suggests that at least for experimental and data-driven sciences, the sharing of research
artifacts should be included as an explanatory variable.

That said, there may be a case for a causal explanation with a clear direction after all.
First, the model controls for many of the confounding variables identified in the literature,
so the possibility of hidden, explanatory variables is diminished. Second, there is a clear
temporal relationship between artifact sharing and citations. Artifact sharing invariably
accompanies the publication of a paper, while its citations invariable follow months or
years afterward. It is therefore plausible to expect that citation counts are influenced by
artifact sharing and not the other way around.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 16/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

If we do indeed assume causality between the two, then an important, practical
implication also arises from this model, especially for authors wishing to increase their
work’s citations. There are numerous factors that authors cannot easily control, such as
their own demographic factors, but fortunately, these turn out to have insignificant effects
on citations. Even authors’ choice of a venue to publish in, which does influence citations,
can be constrained by paper length, scope match, dates and travel, and most importantly,
the peer-review process that is completely outside of their control. But among the citation
factors that authors can control, the most influential one turns out to be the sharing of
research artifacts.

A causal link would then provide a simple lever for systems authors to improve their
citations by an average of some 34%: share and link any available research artifacts.
Presumably, authors attempting to maximize impact already work hard to achieve a
careful study design, elaborate engineering effort, a well-written paper, and acceptance at a
competitive conference. The additional effort of planning for and releasing their research
artifact should be a relatively minor incremental effort that could improve their average
citation count. If we additionally assume causality in the link between higher artifact
sharing rates and acceptance to more competitive conferences, the effect on citations can
be compounded.

Other potential implications of our findings mostly agree with our intuition and with
previous findings in related studies, as described in the related-work. For example, all other
things being equal, papers with open access and with long-lasting artifacts receive more
citations.

Two factors that do not appear to have a positive impact on citations, at least in our
dataset, are the receipt of artifact badges or the linking of artifacts in the paper. This is
unfortunate because it implicitly discourages standardized or searchable metadata on
artifacts, which is critical for studies on their effect, as described next.

Threats to validity
Perhaps the greatest challenge in performing this study or in replicating it is the fact
that good metadata on research artifacts is either nonexistent or nonstandard. There is
currently no automated or even manual methodology to reliably discover which papers
shared artifacts, how they were they shared, and how long did they survive. There are
currently several efforts underway to try to standardize artifact metadata and citation, but
for this current study, the validity and scalability of the analysis hinge on the quality of the
manual process of data collection.

One way to address potential human errors in data collection and tagging is to collect
a sizeable dataset—as was attempted in this dataset—so that such errors disappear in the
statistical noise. Although a large-enough number of artifacts was identified for statistical
analysis, there likely remain untagged papers in the dataset that did actually release an
artifact (false negatives). Nevertheless, there is no evidence to suggest that their number
is large or that their distribution is skewed in some way as to bias statistical analyses.
Moreover, since the complete dataset is (naturally) released as an artifact of this paper, it
can be enhanced and corrected over time.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 17/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Additionally, there is the possibility of errors in the manual process of selecting
conferences, importing data about papers and authors, disambiguating author names,
and identifying the correct citation data on GS. In the data-collection process, we have
been careful to cross-validate the data we input against the one found in the official
proceedings of each conference, as well as the data that GS recorded, and reconciled any
differences we found.

Citation metrics were collected from the GS database because it includes many
metrics and allows for manual verification of the identity of each author by linking
to their homepage. This database is not without its limitations, however. It does not
always disambiguate author names correctly, and it tends to overcount publications and
citations (Halevi, Moed & Bar-Ilan, 2017; Harzing & Alakangas, 2016; Martin-Martin et al.,
2018; Sugimoto ¢ Lariviere, 2018). The name disambiguation challenge was addressed by
manually verifying the GS profiles of all researchers and ensuring that they include the
papers from our dataset. Ambiguous profiles were omitted from our dataset. As for citation
over-counting, note that the absolute number of citations is immaterial to this analysis,
only the difference between papers with and without artifacts. Assuming GS overcounts
both classes of papers in the same way, it should not materially change the conclusions we
reached.

Our dataset also does not include data specific to self-citations. Although it is possible that
papers with released artifacts have different self-citations characteristics, thus confounding
the total citation count, there is no evidence to suggest such a difference. This possibility
certainly opens up an interesting question for future research, using a citation database
with reliable self-citation information (unlike GS).

RELATED WORK

This paper investigates the relationship between research artifacts and citations in the
computer systems field. This relationship has been receiving increasingly more attention
in recent years for CS papers in general. For example, a new study on software artifacts
in CS research observed that while artifact sharing rate is increasing, the bidirectional
links between artifacts and papers do not always exist or last very long, as we have also
found (Hata et al., 2021). Some of the reasons that researchers struggle to reproduce
experimental results and reuse research code from scientific papers are the continuously
changing software and hardware, lack of common APIs, stochastic behavior of computer
systems, and a lack of a common experimental methodology (Fursin, 2021), as well as
copyright restrictions (Stodden, 2008).

Software artifacts have often been discussed in the context of their benefits for open,
reusable, and reproducible science (Hasselbring et al., 2019). Such results have led more
CS organizations and conferences to increase adoption of artifact sharing and evaluation,
including a few of the conferences evaluated in this paper (Baker, 2016b; Dahlgren, 2019;
Hermann, Winter ¢ Siegmund, 2020; Saucez, Iannone & Bonaventure, 2019). One recent
study examined specifically the benefit of software artifacts for higher citation counts
(Heumiiller et al., 2020). Another study looked at artifact evaluation for CS papers and

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 18/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

found a small but positive correlation with higher citations counts for papers between 2013
and 2016 (Childers & Chrysanthis, 2017).

When analyzing the relationship between artifact sharing and citations, one must be
careful to consider the myriad possibilities for confounding factors, as we have in our
mixed-effects model. Many such factors have been found to be associated with higher
citation counts. Some examples relating to the author demographics include the authors’
gender (Frachtenberg & Kaner, 2021; Tahamtan, Afshar & Ahamdzadeh, 2016), country
of residence (Gargouri et al., 2010; Peng ¢ Zhu, 2012; Puuska, Muhonen & Leino, 2014),
affiliation (Tomkins, Zhang & Heavlin, 2017), and academic reputation metrics (Hurley,
Ogier ¢ Torvik, 20145 Bjarnason ¢ Sigfusdottir, 2002). Other factors were associated with
the publishing journal or conference, such as the relative quality of the article and the
venue (McCabe ¢ Snyder, 2015) and others still related to the papers themselves, such as
characteristics of the titles and abstracts, characteristics of references, and length of paper
(Tahamtan, Afshar & Ahamdzadeh, 2016).

Among the many paper-related factors studied in relation to citations is the paper’s
text availability, which our data shows to be also linked with artifact availability. there
exists a rich literature examining the association between a paper’s own accessibility and
higher citation counts, the so-called “OA advantage” (Bernius ¢ Hanauske, 2009; Davis ¢
Walters, 2011; Sotudeh, Ghasempour & Yaghtin, 2015; Wagner, 2010).

For example, Gargouri et al. found that articles whose authors have supplemented
subscription-based access to the publisher’s version with a freely accessible self-archived
version are cited significantly more than articles in the same journal and year that have
not been made open (Gargouri et al., 2010). A few other more recent studies and reviews
not only corroborated the OA advantage but also found that the proportion of OA
research is increasing rapidly (Breugelmans et al., 2018; Fu ¢» Hughey, 2019; McKiernan et
al., 2016; Tahamtan, Afshar ¢ Ahamdzadeh, 2016). The actual amount by which open
access improves citations is unclear, but one recent study found the number to be
approximately 18% (Piwowar et al., 2018), which means that higher paper accessibility
on its own is not enough to explain all of the citation advantage we identified for papers
with available artifacts.

Turning our attention specifically to the field of systems, we might expect that many
software-based experiments should be both unimpeded and imperative to share and
reproduce (Ince, Hatton & Graham-Cumming, 2012). But instead we find that many
artifacts are not readily available or buildable (Collberg ¢ Proebsting, 2016; Freire, Bonnet
& Shasha, 2012; Heumiiller et al., 2020; Krishnamurthi & Vitek, 2015). A few observational
studies looked at artifact sharing rates in specific subfields of systems, such as software
engineering (Childers & Chrysanthis, 2017; Heumiiller et al., 2020; Timperley et al., 2021)
and computer architecture (Fursin ¢ Lokhmotov, 2011), but none that we are aware of have
looked across the entire field.

Without directly comparable information on artifact availability rates in all of systems
or in other fields, it is impossible to tell whether the overall rate of papers with artifacts
in our dataset, 27.7%, is high or low. However, within the six conferences that evaluated
artifacts, 42.86% of papers released an artifact, a very similar rate to the ~ 40% rate found

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 19/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

in a study of of a smaller subset of systems conferences with an artifact evaluation process
(Childers & Chrysanthis, 2017).

In general, skimming the papers in our dataset revealed that many “systems” papers do
in fact describe the implementation of a new computer system, mostly in software. It is
plausible that the abundance of software systems in these papers and the relative ease of
releasing them as software artifacts contributes directly to this sharing rate, in addition to
conference-level factors.

CONCLUSION

Several studies across disparate fields found a positive association between the sharing of
research artifacts and increased citation of the research work. In this cross-sectional study
of computer systems research, we also observed a strong statistical relationship between
the two, although there are numerous potential confounding and explanatory variables to
increased citations. Still, even when controlling for various paper-related and conference-
related factors, we observe that papers with shared artifacts receive approximately one-third
more citations than papers without.

Citation metrics are a controversial measure of a work’s quality, impact, and importance,
and perhaps should not represent the sole or primary motivation for authors to share their
artifacts. Instead, authors and readers may want to focus on the clear and important benefits
to science in general, and to the increased reproducibility and credibility of their work in
particular. If increased citation counts are not enough to incent more systems authors to
share their artifacts, perhaps conference organizers can leverage their substantial influence
to motivate authors. Although artifact evaluation can represent a nontrivial additional
burden on the program committee, our data show that it does promote higher rates of
artifact sharing.

While many obstacles to the universal sharing of artifacts still remain, the field of
computer systems does have the advantage that many—-if not most—of its artifacts come
in the form of software, which is easier to share than artifacts in other experimental fields.
It is therefore not surprising that we find the majority of shared and extant artifacts in
computer systems hosted on github.com, a highly accessible source-code sharing platform.
That said, a high artifact sharing rate is not enough for the goals of reproducible science,
since many of the shared artifacts in our dataset have since expired or have been difficult
to locate.

Our analysis found that both the findability and accessibility of systems artifacts can
decay significantly even after only a few years, especially when said artifacts are not hosted
on dedicated open and free repositories. Conference organizers could likely improve
both aspects by requiring—and perhaps offering—standardized tools, techniques, and
repositories, in addition to the sharing itself. The ACM has taken significant steps in
this direction by not only standardizing various artifact badges but also offering its own
supplementary material repository in its digital library. A few conferences in our dataset,
like SC, are taking another step in this direction by also requesting a standardized artifact
description appendix and review for every technical paper, including a citeable link to the
research artifacts.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 20/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

To evaluate the impact of such efforts, we must look beyond the findability and
accessibility of artifacts, as was done in this study. In future work, this analysis can
be expanded to the two remaining aspects of the FAIR principles: interoperability and
reusability, possibly by incorporating input from the artifact review process itself. The hope
is that as the importance and awareness of research artifacts grows in computer systems
research, many more conferences will require and collect this information, facilitating not
only better, reproducible research, but also a better understanding of the nuanced effects
of software artifact sharing.

ACKNOWLEDGEMENTS

I wish to thank Prof. Kelly McConville of Reed College for her thoughtful and patient
assistance with the statistical analysis.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Eitan Frachtenberg conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
All source and data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.887#supplemental-information.

REFERENCES

ACM. 2020. Artifact review and badging version 1.1. Available at hitps://www.acm.org/
publications/policies/artifact-review-and-badging-current.

Baker M. 2016a. 1,500 scientists lift the lid on reproducibility. Nature News 533(7604):452
DOI 10.1038/533452a.

Baker M. 2016b. Digital badges motivate scientists to share data. Nature News Epub
ahead of print May 12 2016 DOI 10.1038/nature.2016.19907.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 21/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.887#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.887#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.887#supplemental-information
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1038/nature.2016.19907
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Bernius S, Hanauske M. 2009. Open access to scientific literature-increasing cita-
tions as an incentive for authors to make their publications freely accessible. In:
42nd Hawaii international conference on system sciences. Piscataway: IEEE, 1-9
DOI 10.1109/HICSS.2009.335.

Bjarnason T, Sigfusdottir ID. 2002. Nordic impact: article productivity and citation
patterns in sixteen Nordic Sociology departments. Acta Sociologica 45(4):253-267
DOI10.1177/000169930204500401.

Breugelmans JG, Roberge G, Tippett C, Durning M, Struck DB, Makanga MM. 2018.
Scientific impact increases when researchers publish in open access and international
collaboration: A bibliometric analysis on poverty-related disease papers. PLOS ONE
13(9):e0203156 DOI 10.1371/journal.pone.0203156.

Calver MC, Bradley JS. 2010. Patterns of citations of open access and non-open access
conservation biology journal papers and book chapters. Conservation Biology
24(3):872-880 DOI 10.1111/j.1523-1739.2010.01509.x.

Carlini N, Wagner D. 2017. Towards evaluating the robustness of neural networks. In:
Proceedings of the IEEE symposium on security and privacy (SP’17). Piscataway: IEEE,
39-57 DOI 10.1109/SP.2017.49.

Childers BR, Chrysanthis PK. 2017. Artifact evaluation: is it a real incentive? In:

2017 IEEE 13th international conference on e-science (e-Science). Piscataway: IEEE,
488-489 DOI 10.1109/eScience.2017.79.

Collberg C, Proebsting TA. 2016. Repeatability in computer systems research. Communi-
cations of the ACM 59(3):62—69 DOI 10.1145/2812803.

Dahlgren E. 2019. Getting research software to work: a case study on artifact evaluation
for OOPSLA 2019. Available at https://2019.splashcon.org/getImage/orig/accpub-
OOPSLA2019-licensed.pdf .

Davis PM, Walters WH. 2011. The impact of free access to the scientific literature: a
review of recent research. Journal of the Medical Library Association: JMLA 99(3):208
DOI 10.3163/1536-5050.99.3.008.

Fehr J, Heiland J, Himpe C, Saak J. 2016. Best practices for replicability, reproducibility
and reusability of computer-based experiments exemplified by model reduction
software. AIMS Mathematics 3:261-281 DOI 10.3934/Math.2016.3.261.

Feitelson DG. 2015. From repeatability to reproducibility and corroboration. ACM
SIGOPS Operating Systems Review 49(1):3—11 DOI 10.1145/2723872.2723875.

Frachtenberg E. 2021. Systems conferences analysis dataset.GitHub. Available at http:
//github.com/eitanf/sysconf/ DOI 10.5281/zenodo.5590574.

Frachtenberg E, Kaner R. 2021. Representation of women in HPC conferences. In:
Proceedings of the international conference for high performance computing, networking,
storage, and analysis (SC’21). St. Louis, MO DOI 10.1145/1122445.1122456.

Freire J, Bonnet P, Shasha D. 2012. Computational reproducibility: state-of-the-art,
challenges, and database research opportunities. In: Proceedings of the 2012 ACM
SIGMOD international conference on management of data. New York: ACM 593-596
DOI 10.1145/2213836.2213908.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 22/26

https://peerj.com
http://dx.doi.org/10.1109/HICSS.2009.335
http://dx.doi.org/10.1177/000169930204500401
http://dx.doi.org/10.1371/journal.pone.0203156
http://dx.doi.org/10.1111/j.1523-1739.2010.01509.x
http://dx.doi.org/10.1109/SP.2017.49
http://dx.doi.org/10.1109/eScience.2017.79
http://dx.doi.org/10.1145/2812803
https://2019.splashcon.org/getImage/orig/accpub-OOPSLA2019-licensed.pdf
https://2019.splashcon.org/getImage/orig/accpub-OOPSLA2019-licensed.pdf
http://dx.doi.org/10.3163/1536-5050.99.3.008
http://dx.doi.org/10.3934/Math.2016.3.261
http://dx.doi.org/10.1145/2723872.2723875
http://github.com/eitanf/sysconf/
http://github.com/eitanf/sysconf/
http://dx.doi.org/10.5281/zenodo.5590574
http://dx.doi.org/10.1145/1122445.1122456
http://dx.doi.org/10.1145/2213836.2213908
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Fu DY, Hughey JJ. 2019. Meta-Research: Releasing a preprint is associated with
more attention and citations for the peer-reviewed article. Elife 8:¢52646
DOI 10.7554/eLife.52646.

Fursin G. 2021. Collective knowledge: organizing research projects as a database of
reusable components and portable workflows with common interfaces. Philosophical
Transactions of the Royal Society A 379(2197):20200211 DOI 10.1098/rsta.2020.0211.

Fursin G, Lokhmotov A. 2011. Artifact evaluation for reproducible quantitative research.
Available at https://www.sigarch.org/artifact-evaluation-for-reproducible- quantitative-
research/.

Garcia-Portugués E. 2021. Notes for predictive modeling. Version 5.8.6. Available at
https://bookdown.org/egarpor/PM-UC3Mj/.

Gargouri Y, Hajjem C, Lariviére V, Gingras Y, Carr L, Brody T, Harnad S. 2010. Self-
selected or mandated, open access increases citation impact for higher quality
research. PLOS ONE 5(10):e13636 DOI 10.1371/journal.pone.0013636.

Halevi G, Moed H, Bar-Ilan J. 2017. Suitability of Google Scholar as a source of scientific
information and as a source of data for scientific evaluation—review of the literature.
Journal of Informetrics 11(3):823-834 DOI 10.1016/}.j01.2017.06.005.

Harzing A-W, Alakangas S. 2016. Google scholar, scopus and the web of science: a
longitudinal and cross-disciplinary comparison. Scientometrics 106(2):787-804
DOI 10.1007/s11192-015-1798-9.

Hasselbring W, Carr L, Hettrick S, Packer H, Tiropanis T. 2019. FAIR and open
computer science research software. ArXiv preprint. arXiv:1908.05986.

Hata H, Guo JL, Kula RG, Treude C. 2021. Science-software linkage: the challenges of
traceability between scientific knowledge and software artifacts. ArXiv preprint.
arXiv:2104.05891.

Hermann B, Winter S, Siegmund J. 2020. Community expectations for research
artifacts and evaluation processes. In: Proceedings of the 28th ACM joint meeting on
european software engineering conference and symposium on the foundations of software
engineering. New York: ACM 469-480 DOI 10.1145/3368089.3409767.

Heumiiller R, Nielebock S, Kriiger J, Ortmeier F. 2020. Publish or perish, but do not
forget your software artifacts. Empirical Software Engineering 25(6):4585-4616
DOI 10.1007/510664-020-09851-6.

Hong NPC, Katz DS, Barker M, Lamprecht A-L, Martinez C, Psomopoulos FE, Harrow
J, Castro L], Gruenpeter M, Martinez PA, Struck THA, Lee A, Loewe A, Van
Werkhoven B, Jones C, Garijo D, Plomp E, Genova F, Shanahan H, Leng], Hell-
strm M, Sandstrm M, Sinha M, Kuzak M, Herterich P, Zhang Q, Islam S, Sansone
S-A, Pollard T, Williams UDAA, Czerniak A, Niehues A, Fouilloux AC, Desinghu
B, Goble C, Richard C, Gray C, Erdmann C, Nst D, Tartarini D, Ranguelova E,
Anzt H, Todorov I, McNally J, Moldon J, Burnett J, Garrido-Snchez J, Belhajjame
K, Sesink L, Hwang L, Tovani-Palone MR, Wilkinson MD, Servillat M, Liffers M,
Fox M, Miljkovi N, Lynch N, Lavanchy PM, Gesing S, Stevens S, Cuesta SM, Peroni
S, Soiland-Reyes S, Bakker T, Rabemanantsoa T, Sochat V, Yehudi Y. 2021. FAIR

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 23/26

https://peerj.com
http://dx.doi.org/10.7554/eLife.52646
http://dx.doi.org/10.1098/rsta.2020.0211
https://www.sigarch.org/artifact-evaluation-for-reproducible-quantitative-research/
https://www.sigarch.org/artifact-evaluation-for-reproducible-quantitative-research/
https://bookdown.org/egarpor/PM-UC3M/
http://dx.doi.org/10.1371/journal.pone.0013636
http://dx.doi.org/10.1016/j.joi.2017.06.005
http://dx.doi.org/10.1007/s11192-015-1798-9
http://arXiv.org/abs/1908.05986
http://arXiv.org/abs/2104.05891
http://dx.doi.org/10.1145/3368089.3409767
http://dx.doi.org/10.1007/s10664-020-09851-6
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

principles for research software (FAIR4RS principles). Harwell Oxford: Research
Data Alliance DOI 10.15497/RDA00065.

Hurley LA, Ogier AL, Torvik VI. 2014. Deconstructing the collaborative impact:
Article and author characteristics that influence citation count. Proceedings
of the American Society for Information Science and Technology 50(1):1-10
DOI 10.1002/meet.14505001070.

Ince DC, Hatton L, Graham-Cumming J. 2012. The case for open computer programs.
Nature 482(7386):485—488 DOI 10.1038/naturel 0836.

Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, Bates S, Bhatia S,
Boden N, Borchers A, Boyle R, luc Cantin P, Chao C, Clark C, Coriell J, Daley M,
Dau M, Dean J, Gelb B, Ghaemmaghami TV, Gottipati R, Gulland W, Hagmann R,
Ho CR, Hogberg D, Hu J, Hundt R, Hurt D, Ibarz J, Jaffey A, Jaworski A, Kaplan
A, Khaitan H, Koch A, Kumar N, Lacy S, Laudon J, Law], Le D, Leary C, Liu Z,
Lucke K, Lundin A, MacKean G, Maggiore A, Mahony M, Miller K, Nagarajan R,
Narayanaswami R, Ni R, Nix K, Norrie T, Omernick M, Penukonda N, Phelps A,
Ross J, Ross M, Salek A, Samadiani E, Severn C, Sizikov G, Snelham M, Souter J,
Steinberg D, Swing A, Tan M, Thorson G, Tian B, Toma H, Tuttle E, Vasudevan
V, Walter R, Wang W, Wilcox E, Yoon DH. 2017. In-datacenter performance
analysis of a tensor processing unit. In: Proceedings of the 44th annual international
symposium on computer architecture (ISCA’17). 1-12 DOI 10.1145/3079856.3080246.

Krishnamurthi S, Vitek J. 2015. The real software crisis: repeatability as a core value.
Communications of the ACM 58(3):34-36 DOI 10.1145/2658987.

Kuznetsova A, Brockhoff PB, Christensen R. HB. 2017. ImerTest package: tests
in linear mixed effects models. Journal of Statistical Software 82(13):1-26
DOI10.18637/jss.v082.113.

Lewis CL. 2018. The open access citation advantage: does it exist and what does it mean
for libraries? Information Technology and Libraries 37(3):50-65
DOI 10.6017/ital.v37i3.10604.

Martin-Martin A, Orduna-Malea E, Thelwall M, Lopez-Cozar ED. 2018. Google scholar,
web of science, and scopus: a systematic comparison of citations in 252 subject
categories. Journal of Informetrics 12(4):1160—-1177 DOI 10.1016/}.j01.2018.09.002.

McCabe MJ, Snyder CM. 2015. Does online availability increase citations? Theory and
evidence from a panel of economics and business journals. Review of Economics and
Statistics 97(1):144—-165 DOI 10.1162/REST _a_00437.

McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, McDougall D,

Nosek BA, Ram K, Soderberg CK, Spies JR, Thaney K, Updegrove A, Woo KH,
Yarkoni T. 2016. How open science helps researchers succeed. eLife 5:e16800
DOI 10.7554/eLife.16800.

Niyazov Y, Vogel C, Price R, Lund B, Judd D, Akil A, Mortonson M, Schwartzman J,
Shron M. 2016. Open access meets discoverability: citations to articles posted to
Academia.edu. PLOS ONE 11(2):e0148257 DOI 10.1371/journal.pone.0148257.

Patterson DA. 2004. The health of research conferences and the dearth of big idea papers.
Communications of the ACM 47(12):23-24 DOT 10.1145/1035134.1035153.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 24/26

https://peerj.com
http://dx.doi.org/10.15497/RDA00065
http://dx.doi.org/10.1002/meet.14505001070
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1145/2658987
http://dx.doi.org/10.18637/jss.v082.i13
http://dx.doi.org/10.6017/ital.v37i3.10604
http://dx.doi.org/10.1016/j.joi.2018.09.002
http://dx.doi.org/10.1162/REST_a_00437
http://dx.doi.org/10.7554/eLife.16800
http://dx.doi.org/10.1371/journal.pone.0148257
http://dx.doi.org/10.1145/1035134.1035153
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Patterson DA, Snyder L, Ullman J. 1999. Evaluating computer scientists and engineers
for promotion and tenure. Computing Research News. Available at hitp://archive?2.
cra.org/uploads/documents/resources/bpmemos/tenure_review.pdf .

Peng T-Q, Zhu JJ. 2012. Where you publish matters most: a multilevel analysis of factors
affecting citations of internet studies. Journal of the American Society for Information
Science and Technology 63(9):1789-1803 DOI 10.1002/as1.22649.

Piwowar H, Priem J, Lariviére V, Alperin JP, Matthias L, Norlander B, Farley A, West
J, Haustein S. 2018. The state of OA: a large-scale analysis of the prevalence and
impact of Open Access articles. Peer] 6:e4375 DOI 10.7717/peer].4375.

Puuska H-M, Muhonen R, Leino Y. 2014. International and domestic co-publishing
and their citation impact in different disciplines. Scientometrics 98(2):823-839
DOI10.1007/s11192-013-1181-7.

Roback P, Legler J. 2021. Beyond multiple linear regression: applied generalized linear
models and multilevel models in R. New York: CRC Press.

Saberi MK, Abedi H. 2012. Accessibility and decay of web citations in five open access ISI
journals. Internet Research 22(2):234-247 DOI 10.1108/10662241211214584.

Saucez D, Iannone L, Bonaventure O. 2019. Evaluating the artifacts of SIGCOMM pa-
pers. Computer Communication Review 49(2):44-47 DOI 10.1145/3336937.3336944.

Snijder R. 2016. Revisiting an open access monograph experiment: measuring citations
and tweets 5 years later. Scientometrics 109(3):1855-1875
DOI10.1007/s11192-016-2160-6.

Sotudeh H, Ghasempour Z, Yaghtin M. 2015. The citation advantage of author-pays
model: the case of Springer and Elsevier OA journals. Scientometrics 104(2):581-608
DOI 10.1007/s11192-015-1607-5.

Stodden V. 2008. The legal framework for reproducible scientific research: Li-
censing and copyright. Computing in Science & Engineering 11(1):35-40
DOI 10.1109/MCSE.2009.19.

Sugimoto CR, Lariviere V. 2018. Measuring research: what everyone needs to know.
Oxford, UK: Oxford University Press.

Tahamtan I, Afshar AS, Ahamdzadeh K. 2016. Factors affecting number of cita-
tions: a comprehensive review of the literature. Scientometrics 107(3):1195-1225
DOI10.1007/s11192-016-1889-2.

Timperley CS, Herckis L, Le Goues C, Hilton M. 2021. Understanding and improving
artifact sharing in software engineering research. Empirical Software Engineering
26(4):1-41 DOI 10.1007/s10664-020-09901-z.

Tomkins A, Zhang M, Heavlin WD. 2017. Reviewer bias in single-versus double-blind
peer review. Proceedings of the National Academy of Sciences 114(48):12708-12713
DOI10.1073/pnas.1707323114.

Van Noorden R. 2015. Sluggish data sharing hampers reproducibility effort. Nature News
Epub ahead of print Jun 3 2015 DOI 10.1038/nature.2015.17694.

Vrettas G, Sanderson M. 2015. Conferences versus journals in computer science.
Journal of the Association for Information Science and Technology 66(12):2674-2684
DOI 10.1002/as1.23349.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 25/26

https://peerj.com
 http://archive2.cra.org/uploads/documents/resources/bpmemos/tenure_review.pdf
 http://archive2.cra.org/uploads/documents/resources/bpmemos/tenure_review.pdf
http://dx.doi.org/10.1002/asi.22649
http://dx.doi.org/10.7717/peerj.4375
http://dx.doi.org/10.1007/s11192-013-1181-7
http://dx.doi.org/10.1108/10662241211214584
http://dx.doi.org/10.1145/3336937.3336944
http://dx.doi.org/10.1007/s11192-016-2160-6
http://dx.doi.org/10.1007/s11192-015-1607-5
http://dx.doi.org/10.1109/MCSE.2009.19
http://dx.doi.org/10.1007/s11192-016-1889-2
http://dx.doi.org/10.1007/s10664-020-09901-z
http://dx.doi.org/10.1073/pnas.1707323114
http://dx.doi.org/10.1038/nature.2015.17694
http://dx.doi.org/10.1002/asi.23349
http://dx.doi.org/10.7717/peerj-cs.887

PeerJ Computer Science

Wagner AB. 2010. Open access citation advantage: an annotated bibliography. Issues in
Science and Technology Librarianship 60:2 DOI 10.5062/FAQ81BOW.

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A,
Blomberg N, Boiten J-W, Da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ,
Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-
Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, Heringa J, t Hoen PA, Hooft R,
Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B,
Rocca-Serra P, Roos M, Van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater
T, Strawn G, Swertz MA, Thompson M, Van der Lei J, Van Mulligen E, Velterop J,
Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. 2016. The FAIR
Guiding Principles for scientific data management and stewardship. Scientific Data
3(1):160018 DOI 10.1038/sdata.2016.18.

Frachtenberg (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.887 26/26

https://peerj.com
http://dx.doi.org/10.5062/F4Q81B0W
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.7717/peerj-cs.887

Submitted 8 September 2021
Accepted 7 June 2022
Published 25 July 2022

Corresponding author
Caifan Du, cfdu@utexas.edu

Academic editor
Silvio Peroni

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.1022

© Copyright
2022 Du et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Understanding progress in software
citation: a study of software citation in

the CORD-19 corpus

Caifan Du', Johanna Cohoon', Patrice Lopez’ and James Howison'

! The University of Texas at Austin, Austin, TX, United States of America
% Science-miner, Naves, France

ABSTRACT

In this paper, we investigate progress toward improved software citation by examining
current software citation practices. We first introduce our machine learning based
data pipeline that extracts software mentions from the CORD-19 corpus, a regularly
updated collection of more than 280,000 scholarly articles on COVID-19 and related
historical coronaviruses. We then closely examine a stratified sample of extracted
software mentions from recent CORD-19 publications to understand the status of
software citation. We also searched online for the mentioned software projects and their
citation requests. We evaluate both practices of referencing software in publications
and making software citable in comparison with earlier findings and recent advocacy
recommendations. We found increased mentions of software versions, increased open
source practices, and improved software accessibility. Yet, we also found a continuation
of high numbers of informal mentions that did not sufficiently credit software authors.
Existing software citation requests were diverse but did not match with software citation
advocacy recommendations nor were they frequently followed by researchers authoring
papers. Finally, we discuss implications for software citation advocacy and standard
making efforts seeking to improve the situation. Our results show the diversity of
software citation practices and how they differ from advocacy recommendations,
provide a baseline for assessing the progress of software citation implementation, and
enrich the understanding of existing challenges.

Subjects Data Science, Social Computing
Keywords Software citation, Science policy, Scholarly communication

INTRODUCTION

Software is crucial to research, but its visibility in scholarly records is problematic,
undermining research policy goals (Mayernik et al., 2017; Howison ¢ Bullard, 2016;
Bouquin et al., 2020). These goals include facilitating more verifiable and reproducible
research by explicitly referencing software in scholarly communications (Howison ¢
Bullard, 2016), ensuring sufficient credit for research software work within the scientific
reputation economy (Bouquin et al., 2020; Howison ¢ Herbsleb, 2011), and tracking the
research impact of software for decisions of funding and support (Katz ¢ Smith, 2015;
Mayernik et al., 2017; Allen, Teuben & Ryan, 2018). Making software visible in scholarly
communication and evaluation can enable these goals. It is also instrumental to incentivize

How to cite this article Du C, Cohoon], Lopez P, Howison J. 2022. Understanding progress in software citation: a study of software cita-
tion in the CORD-19 corpus. Peer] Comput. Sci. 8:¢1022 http://doi.org/10.7717/peerj-cs.1022

https://peerj.com/computer-science
mailto:cfdu@utexas.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

high quality software work that buttresses more robust and useful research. Thus, there is a
need to improve the visibility of software in research. Corresponding advocacy efforts have
been gaining traction recently, pushing toward machine- and human-actionable software
citations in scholarly communications.

A body of research has investigated software visibility in the scholarly record, with results
largely confirming the frustration research software practitioners express (e.g., Howison
¢ Bullard, 20165 Pan et al., 2018; Bouquin et al., 2020). For instance, in contrast with the
well established practice of citing publications, Howison and Bullard found through their
examination of biology articles published between 2000 and 2010 that software citation
“practices are varied and appear relatively ad hoc” (Howison ¢ Bullard, 2016). They found
43% of mentions of software were “informal” mentions without bibliographical references,
largely noting the software “name-only”’; 39% of mentions appeared in bibliographies;
19% of mentions were presented in a “like instrument” manner which gave the software
name and its (usually commercial) publisher with an address. Only 28.5% of the mentions
were found to provide version information; only 6% of those versions could be found
online. Similarly, Pan et al. (2018) traced specific cases of software through 481 papers
and found “researchers mention and cite the tools in diverse ways, many of which fall
short of a traditional formal citation”. Finally, Bouquin and colleagues studied practices
in the Astronomy literature, examining publisher-provided XML for over 76,000 articles
published between 1995 and 2018 (Bouquin et al., 2020). Using a list of nine known software
packages, they highlighted the “variation” in how these packages were mentioned. They
identified diverse “software aliases” in different locations within papers, highlighting false
positives due to name ambiguity (e.g., a package named after a planet). They concluded
that while software is valued, the inability to “systematically identify software citations”
due to their variability can lead “people to doubt the value of citing software” and the
authors highlight the importance of advocacy efforts to standardize practices.

These studies have also noted that it is important that software providers indicate how
they would like to be credited within papers. Howison and Bullard found only 18% of
mentioned packages provided a “request for citation”, but these requests appeared to be
effective: 68% of the mentions of those packages followed those requests. Bouquin and
colleagues identified “preferred citations” statements made by software providers online
for all their studied packages, reporting that these were often requesting multiple preferred
citations or sometimes made inconsistent citation requests across different locations.

Advocacy around software citation has called for new (or clarified) practices
among software providers, end-user researchers, and publication venue editors. The
FORCEI1 organization has been one venue for this work through the Software Citation
Working Group (and its follow-up initiatives), leading to the publication of clear
recommendations (Smith, Katz ¢ Niemeyer, 2016; Katz et al., 2019; Katz et al., 2021,
Chue Hong et al., 2019). This advocacy has also connected with similar issues in the
sphere of research data, including DataCite (Brase, Lautenschlager ¢ Sens, 2015) and FAIR
principles (Hong et al., 2021). Additional work has focused on the accessibility of software
metadata, such as through software catalogs (Allen ¢ Schmidt, 2014; Monteil et al., 20205
Muench et al., 2020). Other efforts have encouraged unambiguous and machine-actionable

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 2/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

formats of “requests for citation”, for instance, the CITATION.cff file (Druskat et al.,
2021).

Finally, discovery techniques also have advanced for improving software visibility.
Prototype systems such as Depsy (Piwowar ¢ Priem, 2016), CiteAs (Du et al., 2021b), and
the recently added software citation discovery feature on GitHub (GitHub, 2021) increase
the chance that research software is identified and cited. Publication mining has also sought
to identify software reported in research papers. Kriiger ¢ Schindler (2020) reviewed 18
studies that use different techniques to extract software mentions from articles. Machine
learning (ML) approaches are the most likely to scale such discoveries. Accordingly, corpora
with manual annotation of software mentions have been developed (e.g., Schindler et al.,
2021; Du et al., 2021a). Supervised ML-based software extraction over large collections with
acceptable computational performance is now possible (Lopez et al., 2021a; Lopez et al.,
2021b; Schindler et al., 2022; Wade ¢ Williams, 2021). Community efforts titled “Habeus
Corpus” was launched and continue to investigate these emerging collections of extracted
software mentions (Habeas Corpus, 2021).

The growing capability to extract software mentions from publications at large scale
now allows us to better assess how software is mentioned in scholarly records. Thus,
in this study, we identify the baseline, opportunities, and challenges for the ongoing
effort of making software visible in scholarship. For this purpose, we created a combined
annotation scheme based on empirical descriptions of software citation practices and
recommendations from advocacy. We used that scheme to annotate a stratified sample
of a recently released collection of software mentions automatically extracted from the
CORD-19 set of open access publications (Lopez et al., 2021a). In this way, we systematically
document and analyze existing practices for software citation. Our annotation results enable
us to understand the current status of software citation implementation, provide a baseline
for future assessment, and compare with previous findings and advocacy recommendations.
Through this analysis, we identify changes, challenges, and pathways for software citation
implementation and advocacy.

RESEARCH QUESTIONS

1. How is software mentioned in recently published literature? Have these patterns
changed from previous studies? How do current patterns compare to recently published
guidelines for software citation?

2. How widespread are requests for citation? What form do they take? How do these
requests compare to recently published guidance?

DATA & METHODS

To answer these research questions, we first obtained a sample of software mentions
extracted from recent literature, leveraging a ML-based software entity recognition pipeline.
Then, we assembled an annotation scheme built upon both past research and existing
recommendations for software citation. We also annotated relevant practices that enable

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 3/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

!Note these two sets have large overlaps.
We present these numbers because there is
no perfect global identifier in this corpus
release.

the citation of software by looking for and examining the online records of mentioned
software.

CORD-19 dataset

We used CORD-19, the COVID-19 Open Research Dataset (Wang et al., 2020), to obtain
software mentions in recent publications. The CORD-19 was initially released in March
2020 by the Allen Institute for Al as a large-scale collection of publications and preprints on
COVID-19 and past related coronavirus research. The initial release included about 28,000
papers; the dataset has been growing through regular updates. We used the 22 March 2021
release in the CORD-19 release history as our base corpus for software mention extraction,
downloaded from https:/www.semanticscholar.org/cord19/download. Out of its 490,904
bibliographical entries, this release includes 274,400 publications that can be uniquely
identified by a distinct DOI (Digital Object Identifier) and 238,283 publications that can
be uniquely identified by a distinct PubMed ID." For reasons discussed below, we did not
use the released extracted article content in JSON format, but harvested the open access
PDFs instead using the identifiers of articles in the dataset as our starting point.

The CORD-19 dataset is not noise-free (Kanakia et al., 2020). According to the metadata
released along with the dataset, the earliest publication dates back to 1800s. Given our
purpose of understanding the very recent software citation practices, we first extracted
software mentions from the full corpus, then concentrated on the extracted mentions
from articles published since 2016 for detailed analysis, the same year during which the
Software Citation Principles (Smith, Katz ¢ Niemeyer, 2016) was published. Metadata in
the CORD-19 dataset release indicate that 80% of its contents were published after 2020,
and 87% were published after 2016. This is because the contents of CORD-19 primarily
focus on COVID-19, which emerged only in 2019. Thus, its large number of publications
in recent years provide a rich base for us to investigate recent software citation practices.

Software mention extraction

We harvested the open access versions of these articles using the article metadata in the
CORD-19 release, including both PDF and structured XML formats where available.
This choice allows for more complete and reliable full-text extraction of software using
our Softcite pipeline. The main components of the Softcite pipeline include three pieces
of software: a full-text PDF harvester (Article Dataset Builder, 2021), a machine learning
library for extracting structured content from scholarly PDFs (GROBID, 2021), and a
software mention recognizer powered by a set of machine learning and deep learning
models (Soficite Software Mention Recognizer, 2021).

Using the Softcite pipeline, we harvested more full-text articles than those released in the
CORD-19 JSON corpus. Software mentions then were extracted from these reharvested
open access publications. The extraction method is described in detail in (Lopez ef al.,
2021b). In short, the pipeline obtains PDFs, structures them using GROBID (GROBID,
2021; Lopez, 2009), and runs the software mention recognizer (Softcite Software Mention
Recognizer, 2021) based on a fine-tuned SciBERT+CRF model (Beltagy, Lo ¢» Cohan, 2019)
trained on the softcite-dataset (Du ef al., 2021a).

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 4/35

https://peerj.com
https://www.semanticscholar.org/cord19/download
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

While Wade ¢ Williams (2021) also published software mention extractions from
CORD-19 based on the softcite-dataset, our extraction enhances the performance in a
number of ways, mainly: (1) a more complete number of full-text articles in PDF were
obtained, along with their DOI metadata retrieved from CrossRef API; (2) additional
techniques to cope with the extreme label imbalance caused by the sparsity of software
mentions in publications; (3) extraction of additional attributes (version, URL, publisher,
context of mention); and (4) entity disambiguation, including normalization and using
Wikidata to identify false positives (e.g., the mention of algorithms but not a particular
software instantiation). Finally, the pipeline also attaches in-text and bibliographic
references to software mentions when available; these references are disambiguated against
and matched with their registered CrossRef DOI. This final step allows us to more
efficiently examine formal citation of software. Overall, the Softcite pipeline demonstrated
good performance when recognizing mentions of software, its version, publisher, and/or
URL mentioned together in text (average fl1-score 79.1), with acceptable computational
performance for processing very large collections of literature in PDF (evaluation reported
in Lopez et al., 2021b).

The softcite-dataset that underlies our extraction pipeline of software mentions is
human-curated annotations of biomedical and economic literature, with the majority of
annotated software mentions identified in biomedical research publications. The shared
focus on biomedicine therefore makes this training set line up well with the examination
of the CORD-19 papers.

Descriptive statistics of extracted software

We published the full extraction results as the Softcite-CORD-19 dataset under CC-
BY—4.0 (Lopez et al., 2021a). In this study, we used published version 0.2.1 (Lopez et al.,
2021a), which is based on the CORD-19 dataset release on 22 March 2021. This version
contains total 295,609 mentions of software, including their semantic and layout details,
bibliographical references linking to the in-text software mentions (N = 55,407), and
metadata of all the documents in which software mentions are recognized (N = 76,448;
out of total 211,213 re-harvested open access full-text documents).

Figure 1 shows an overall breakdown of all the 295,609 software mentions in the
Softcite-CORD-19 dataset and what (and how many) details are mentioned along in their
article context. These extraction results are conditional on the extraction performance of
our pipeline (Lopez et al., 2021b). About 50% of the extracted software mentions are solely
names of the software without further details; 35% provide a version; 21% mention their
publisher; and 9% have a URL given in the text.

Stratified sampling

To get an overview of how software has been mentioned in recent publications, we took
software mentions extracted from the 61,175 articles (87%) published since 2016 in the
Softcite-CORD-19 dataset as our sample frame. This sample frame contains 250,163
extracted software mentions. Due to the time when COVID-19 emerged, the sample frame
is skewed toward software mentions in publications after 2019; software mentions from
articles published since 2020 totals 85% of the extracted mentions in our sample frame.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 5/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

2There are also numerous preprints in the
CORD-19 corpus.

148828

100000 4

59014

Mumber of Mentions

50000 {

araie | wrl
a1604 [l publisher
104159 [l version I

295600 [software []

500000 250000 O
Total of times
being Mentioned

Figure 1 Number of extracted software mentions and their associated details in the Softcite-CORD-19
dataset. The figure was created using UpSetR (Conway, Lex & Gehlenborg, 2017).
Full-size Eal DOI: 10.7717/peerjcs.1022/fig-1

We systematically constructed a random sample of software mentions from our sample
frame, stratified by the impact factor of the article’s publication venue as well as the article’s
mention density.

Impact factor

Because a scientific reader’s attention is often concentrated on a few publication venues
(Bradford, 1934; Brookes, 1985), these venues may have an outsized effect on their
perception of the scientific reporting practices. The journal impact factor, developed
by the Institute of Scientific Information (ISI) and annually calculated and published by
the ISI Web of Science (WoS), is calculated based on the citations to one journal within
a given period of time. Because citation to one journal is an outcome of one’s scientific
attention, we used the journal impact factor as the proxy of collective scientific attention.
We matched the 6,997 distinct journal titles in the Softcite-CORD-19 dataset (version
0.2.1) using CrossRef DOI metadata to the 12,312 indexed journals in the IST WoS 2020
Journal Citation Report. 78% of the publications (N = 47,959) in the sample frame were
identified as articles from a venue with an indexed journal impact factor.

We then divided the publications in the sample frame into different strata based on
the range that their journal impact factor ranking falls in: 1-10, 11-100, 101-1,000,
1,001-12,982, and a “No impact factor” group for those articles from venues without
an indexed impact factor.” This stratification balanced the coverage of articles from
journals that receive different levels of attention in our sample. This choice also enabled
us to examine software citation practices in comparison with the prior analysis of 90
biological publications from 2000 to 2010 in (Howison ¢ Bullard, 2016). In that study, 90
articles from journals indexed in the 2010 ISI WoS biology-related subject headings were

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 6/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-1
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

50000 -

10000 -

1000 -

100-

10-

Number of articles mentioning software

i 10 100 350
Mention density per article

Figure 2 In our sample frame, number of articles mentioning software varies by mention density per
article. 25,116 articles in the sample frame (41%) had only one software mention, while one particular ar-
ticle had the most software mention (N = 330). Only 11% of the articles in the sample frame had more
than 9 software mentions.

Full-size tal DOI: 10.7717/peerjcs.1022/fig-2

randomly sampled by a 3-tier journal impact stratification: journals with impact factor
ranked 1 through 10, then those ranked 11-100, finally those ranked 111-1,455.

Mention density

The number of software mentions extracted per article, i.e., the mention density, varied
significantly in the sample frame. The average mention density is 4.1 with a standard
deviation of 7.2, and ranges from one to 330 mentions per article. In Fig. 2, this variance
in our sample frame is further illustrated. Because of this variation, we also stratified our
sample by mention density.

The variation of mention density across articles could be the result of changing practices
of mentioning software over time, different genres of publications across venues and
domains, requirements of journals, and/or writing conventions of authors, and so forth.
Figure 3 demonstrates the distribution of mention density in different impact strata:
Articles in the top impact factor stratum have a narrower distribution of mention density.
Articles in lower/no journal impact factor strata have more articles with more than eight
software mentions; these strata also have outlier articles where more than 100 software
mentions are recognized. To ensure representation of these different distributions, we
grouped the articles in our sample frame into three subsets by their mention density. The
resulting sample frame and the number of articles in each stratum are summarized in

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 7135

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-2
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

300 -

100 -

10 -

Mention density per article

" LA

[1.10] [11,100] [101,1000] [1001,12082] No Impact Factor
Journal impact factor stratum

Figure 3 The distribution of mention density in each journal impact factor stratum. The horizontal
line within each violin plot denotes the median mention density in the distribution.
Full-size G4l DOI: 10.7717/peerjcs.1022/fig-3

Table 1 Number of articles and their percentage in the sample frame from each sample stratum.

Mention density [0,1] [2, 8] [9, 350]
impact strata (41.06%) (48.13%) (10.82%)
1, 10] (0.05%) 17 16 0

[11, 100] (0.95%) 179 259 142

(101, 1,000] (9.31%) 2,201 2,708 784
[1,001, 12,982] (51.14%) 13,606 15,291 2,385
No Impact Factor (38.56%) 9,113 11,168 3,306

Table 1, which also shows the uneven distribution of articles across different strata. Our
stratification therefore supports more balanced sampling.

We examined annotation results in each stratum after annotation. However, we did not
find substantial differences across any strata, so we do not report results broken down by
these strata in this article.

We randomly sampled 15 articles from each stratum. Because there is no article in
the stratum with the highest mention density ([9,350]) and highest journal impact rank
([1,10]), we skipped this stratum and obtained a sample of 210 articles from the remaining
14 strata. Next, we randomly sampled one software mention from all the extracted
mentions of each article. Given that the CORD-19 dataset is a somewhat noisy corpus,
when we encountered an article that is not a research article (e.g., scientific news postings),
we moved to the next article in the same sample stratum and randomly sampled an

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 8/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-3
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

extracted mention from this article to replace the original one. Accordingly, we gained a
sample of 210 extracted software mentions. The scripts for implementing this stratified
sampling procedure as well as all the analyses and figures discussed in the following sections
can be found in https:/github.com/caifand/cord19-sw-analysis.

Annotation

We developed a coding scheme to manually validate and annotate the sampled extraction
results. Based on empirical descriptions of software citation practices and recommendations
from advocacy, this coding scheme allows for capture of current practices for software
citation and comparison to advocated-for best practices (Smith, Katz ¢ Niemeyer, 2016;
Katz et al., 2019; Hong et al., 2021). The full coding scheme contains 57 codes. Some codes
were annotated based only on the content of the mention and its original article, while
others, such as those regarding the access and archiving status of software, required
annotators to conduct web searches and locate online presences of the mentioned software.

The first codes in our scheme validate the extracted mentions and their details. These
codes require examination of the extracted mention content (sentences from original
full-texts that mentioned software) and their accompanying bibliographical items. The
original PDF publications were also examined to confirm whether the extracted results
were consistent with the source article. For any problematic software extraction results, we
manually corrected the extraction and annotated them accordingly. If it was not found in
the corresponding PDF, we randomly sampled another mention from the same article, or
moved to the next article in the sample frame and randomly sampled one of its mentions if
the original article had only a single extracted mention. Throughout the sample annotation
process, we found 5% of the automatically extracted software mentions are false positives
(95% CI [0.03, 0.09]).

Figure 4 presents the remainder of our codes. We first replicated the coding scheme
applied by Howison ¢ Bullard (2016), including codes about the in-text software mentions
and their bibliographical entries, the functions of these software mentions, the access to the
mentioned software, and whether the software citation aligns with a discoverable citation
request (codes A1-B1, B3—C3, D1-D5, & E1). We then added codes E2-E14 to specify the
format, contents, and location of citation requests. Next, we identify whether these codes
meet the advocacy recommendations for software citation, particularly those discussed
in Smith, Katz & Niemeyer (2016) and Katz et al. (2019). This mapping from empirical
descriptions to advocacy recommendations allows us to compare annotated practices with
advocacy recommendations.

Here we explain how the codes are mapped from the scheme of empirical descriptions
(Howison ¢ Bullard, 2016) to specific advocacy recommendations, as the crosswalk in Fig. 4
shows. For example, if a software mention includes the name and version of the software,
credits its creator(s), and provides a URL to facilitate the access (codes A1-A4), then the
basic requirements of the Software Citation Principles (Smith, Katz ¢» Niemeyer, 2016) are
met. If the mention enables the access to the software, no matter it is open source or closed
source, then it further conforms with later recommendations (codes D2-D5; particularly,
Katz et al. (2019) have specified citation expectations for closed source software as the code

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 9/35

https://peerj.com
https://github.com/caifand/cord19-sw-analysis
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

g Cde i Howison & Hullard | Smith et al Katz et al. FAIRARS
eme: L planation
P (2016 (2016) 2014 (2021)
Al |Software name The nams of the mentioned software is mentoned ¥ ¥ ¥
A2 [Version Specific version number ar relese date is mentione) 'S o v
Software | A3 |Publisher Publisher or creater of software is mentioned o o o
mention A weh link is mentioned in text with sofiware {a resoly able
AL |LREL i ! o o S
sdentifier is counted)
o S Lt perfarimed using the Prisw 30 software [Ciragh Pad
A5 | "Like — : 3
A5 ["Like instrament” mention Software, San Dicgo, CA. T/SA} o
A [Software configuration details €., OPETILIoN EnyINONMENT; parameser serings S
"saftware pubhbication” or 2 publicat stantially o s
Bl |t v software publication e Rearé b Bintion Srapikieniad Wbati il dideutecd s
the technical aspects of the s fiware
The software iself, instead of any publications, & referenced in
B2 |Cite o sultware 5 T " v
Software raphy
retersnee | g3 | e o domin publication A publieation that discusses domain science topics, including
methods or models but not their software instantiztion
The documentation af the software is referenced o
A project name or website is referenced /!
The mention/citation enables deniifying the software as u
C1 | Idennifiable distinet idemtiny (e with & unigue name. onling information v
wenilabie from relioble soarces)
A szhle presence of the sofiware in any relevant form (e.g.
©2 | Findable wehsite: downloads working repositories; documentatson) can o
Chtmtion b firundl oriline
unation A gable presence of the mentioned =software version can be 3
funenon | 3 | pandable version o “ : i " /
found anline
: A possible form of unigue and persstent identifier such as DOI
., | Referenced with unigue and : i : PO
[t} St SWHID, ARK, Handle, NBX, or PURL i roferemeed a5 the o o
persistent entifser i
software itself
5 | Referenced with a commit hash A git commit hash is referenced For a snapshot af sofware o
3 Mo findable information online about Bow o access the
Dl |No nogess 4
sofiware
D2 |Propricsary A license foe has to be paid for accessing the sofrware o s
D3 [Free access Softuare can be accessed withou! 2 payment o ¥
M |S0urce code aceessible The seurce code of the software is available online < o S
@ pablishie s given porimision 10 users for modifying the
P Il publishier bas given peemsision 1o vsers for madifving th ”) i
i saftware {o.z., open source licensed or public damain ssftware)
D [Open source Thie settware has a standard open seurce license o £ v
The seftware is menticned i a way that matches the citation ;
EI | Matches eitanion reguest - o
requeest by its publisher
E2 | Main text citation request The publisher hns requested prefierred cittion in plain text siyle
The publisher hns provided a preferred citation m BibTes
E3 | BnTe citation request P L Uil
farmar
4 | Cotion request in repasiiory The publisher has requested preferred citation in the READMI
| README of & working repasitory (e.g., on Gilllub/Gillab)
3 The publisher s requesied preferred jom on o webpoge
ES |Cnanon requedt on web page
(e, project website; on a safware catalog page)
Ef |CITATION fike A CITATION file is provided for sequesting preferred citation
S | ——— A CITATION efF file is pravided for requesiing preferred . -
calntinn
ER |CodeMeta A CodeMena file s provided for reguesting prefened cittion o o
Diamam-specife citation metadak is provided seeh 2sa B
4 | Dsmuin-sprecific clstion metdata s
b CITATIONDESCRIFTION file
E10| Request to cite s frware The software publisher requests ta cite the software dself o o
ENE [Reeguest i oite s fwane poblcation | The solvware publsier requests to eite @ software publicaton
The seliware publisher requests 1o cite 2 deman scisnoe
E12 | Request 10 cite domain publication ! e N
publ
The solvware publish cquests t gite @ project rather than a
E13|Request to cile a project x s i L2 Projes !
software product
Eld Request i gite other research The seftware publisher requests to it ather non-so fiware
~ |praduct products sweh as dataset
The software has at least one version archived in o archival _
Fl [Archived - k : s X v
repository (e, Zenodo; Figshare; mstittional repository |
y 5 5 The soltware sl has a snigue amt perssient dennilier feg.,
F2 | Unigue and perssstent identifier o v s
N " 101, Had ke, ARK. NBN, PURL, SWHID)
15 | erndats avatbable The seftware has publicly a b metadata, inchading hath " 7 y
tution metadatn gl package metadati

Figure 4 A crosswalk between the software extraction coding scheme and advocacy recommendations.
Full-size Gal DOI: 10.7717/peerjcs.1022/fig-4

D2 concerns). If a mentioned piece of software has an available citation request online for

the mentioned software and it requests to cite the software artifact rather than any other

complementary artifact (such as a publication or user manual) and if specific formats of

citation metadata (e.g., CITATION.cff, CodeMeta) are adopted, these practices also comply
with the advocacy recommendations (codes E7, E8, E10). In cases where a citation request
is declared by domain-specific metadata, such as by an R DESCRIPTION/CITATION file,

Du et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1022

10/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-4
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

it does not conform with those software citation advocacy recommendations, but meets
one of the FAIR Principles for Research Software (FAIR4RS) that the software metadata
should be findable. While the FAIR4RS Principles are not primarily advocated for software
citation implementation, we included them for reference.

To better examine the extent to which existing citation practices align with
advocacy recommendations, we added codes that are primarily derived from advocacy
recommendations (codes B2, C4—C5, D6, F1-F3). These codes concern whether the
software artifact itself is referenced in the bibliography with a unique and/or persistent
identifier and whether the software artifact is archived, registered with an persistent
identifier, or has available metadata online. These emphases from current advocacy
recommendations ensure that the software artifact can be referenced like traditional
research products such as scholarly publications. In particular, valid form of metadata
available (codes E7-E9, F2 & F3) and/or a unique and persistent identifier make the
software in accordance with the FAIR4RS “Findable” principle (codes F1, F2, and/or F3).
If the software code follows standard open source (code D6), then it is “reusable” in the
sense of the FAIR4RS definition (specifically, see FAIR4RS principle R1.1 in Hong et al.,
2021). Given our emphasis on software citation, we considered only the aspects of FAIR4RS
related to software citation.

To confirm the inter-annotator reliability of the coding scheme, two authors initially
annotated a sub-sample (10% of the full sample). They achieved 93.3% percentage
agreement across all the codes in the full coding scheme; discussions resolved the remaining
disagreements. Later, a third author joined as an annotator using the validated coding
scheme. Questions emerging from the annotation process were then discussed among
annotators to reach consensus and refine the coding scheme accordingly. Finally, after the
annotation was finished, one author wrote a script to validate the logical constraints and
consistency between coding results, and re-annotated when violations of logical constraints
were identified.

RESULTS

As our annotation scheme is extended from previous empirical descriptions of software
citation practices, we are able to compare our results with earlier findings from Howison ¢
Bullard (2016) to see if software citation practices have changed. The annotation scheme also
allows us to compare existing practices with advocacy recommendations and understand
whether they converge or deviate. In this section, we report the annotation results with
these considerations. We first describe the forms that software mentions take in our sample
and the functions of scholarly citation they are able to realize. Next, we discuss the extent to
which the mentioned software is citable as the advocacy has recommended by examining
their metadata availability, archiving status, and persistent identification. Finally, we
present findings about how software citation has been requested by software creators and
publishers. Our annotation was conducted in August 2021 and all the annotations about
software online presences correspond to results of web searches conducted then. We report
all the proportions of coded categories with 95% confidence interval. These results were
calculated using the prop. test function in the base R package stats (R Core Team, 2019).

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 11/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

06 0.8

Proportion
04

7. Mame only

Other
:[Like instrument
Software publication :I:]:
Domain publication 1
Cite to software } Lt

] '
Formal citation Infarmal mention

0.2

0.0

Figure 5 18% of the software mentions in the sample were formal citations (the transparent bar on the
left) of either the software itself, a domain publication, or a software publication. The remaining 82%
were informal mentions without bibliographical references, including those mentioning software name
only, following a “like instrument” style, providing a URL in text, or other forms of casual mentions that
might refer to a version and/or software creator. Error bars show the 95% confidence interval estimates.
Full-size Gal DOI: 10.7717/peerjcs.1022/fig-5

How software is mentioned
Forms of software mention

Overall, 82% of the software mentions in our sample (N = 172; 95% [0.76, 0.87]) were
informal without a bibliographical reference (Fig. 5). Most of these informal mentions
only gave the name of the software; sometimes they additionally referred to a version,
software creator or publisher, and/or a URL. 30% of the mentions (N = 63; [0.24, 0.37])
only referred to the software by its name (Fig. 5). Because our annotation procedures
rely on the results of the software mention recognizer, it is possible that we have missed
mentions that provided no name (e.g., “using a program we wrote”). However, we do not
expect these would have been substantial, given that Howison ¢ Bullard (2016) only found
1% ([0, 0.04]) unnamed software mentions in their corpus.

Consistent with findings from Howison ¢ Bullard (2016), we found software was
sometimes mentioned “like instrument” (22% of the sample, N =46, [0.17, 0.28]) in that
it is similar to how researchers conventionally reference scientific instruments provided by
vendors or manufacturers when authoring academic publications. This kind of mentions
specify the software name, the name of its provider, and often the geographical location of
the provider (e.g., “STATA, StataCorp, College Station, TX”). 4% of the mentions (N =9;
[0.02, 0.08]) in the sample provided a URL in text for software access. These results are
indistinguishable from the findings in Howison ¢ Bullard (2016) that 19% ([0.14, 0.24])
of the software mentions identified in the biology literature sample were in the “like
instrument” style and 5% ([0.03, 0.08]) gave a URL.

In contrast to findings from Howison ¢ Bullard (2016), we did not find any software
mentions citing a software manual or its project. The majority of formal citations still cited
a publication—either a domain science publication (5%, N =11, [0.02, 0.09]), or, more

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 12/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-5
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

commonly, a software publication (11%, N =24, [0.08, 0.17]). In Howison & Bullard’s
sample, even more software mentions cited a publication (37%; [0.31, 0.43]).

Software Citation Principles (Smith, Katz & Niemeyer, 2016) suggest that the software
artifact itself should be cited as a first-class research product; any relevant publications
should be cited as companions. In this case, we found three formal citations of the software
artifact in bibliography (1.4%; [0.004, 0.05]), which was not found in Howison ¢» Bullard
(2016), but none of them included an identifier such as a persistent DOI or a commit hash
(Katz et al., 2019). Thus, none of these software mentions or citations met the Software
Citation Principles’ goal of unique identification or persistence. The identification of the
mentioned software, especially when a specific version is involved, mainly relies on whether
there is a URL referenced in text, otherwise the academic readers would need to make use
of any clue revealed by the software mention to look for the software.

Functions of software mentions

Traditional scholarly citation allows for the identification, access, and subsequently
verifying and building upon the cited work (Howison ¢ Bullard, 2016). Software
citation advocacy seeks to enable these functions by recommending best practices for
referencing software in scholarly work (Katz et al., 2021). Howison ¢ Bullard (2016)
found that informal software mentions could still function to some extent in scholarly
communications. We assessed and annotated the enabled functions of mentions in our
sample in accordance.

A software mention was annotated as “identifiable” if the information given
distinguished the software as a distinct entity. It was then annotated as “findable” when the
mention facilitated the online search and discovery of the software. 96% ([0.92, 0.98]) of the
software mentions were both identifiable and findable, enabling the annotator to discover
a distinct piece of software via web search (Fig. 6). These results suggest an improvement
on findable software from Howison & Bullard’s results: they found 93% ([0.88, 0.96])
of software mentions supported the successful identification of software but fewer (86%;
[0.80, 0.90]) enabled online discovery. Overall, it is positive that we were able to identify
and find almost all of the software even though 82% of all the identified mentions were
informal. This finding implies that most software has online presence(s).

We saw that 46% ([0.39, 0.53]) of the software mentions specified a version and 43%
([0.36, 0.50]) of the software mentions had a findable version online, an increase over
Howison & Bullard’s findings (28%, [0.22, 0.35], and 5%, [0.03, 0.10], respectively). 48%
([0.41, 0.56]) of the informal software mentions and 35% ([0.21, 0.53]) of the formal
citations identified specific versions (Fig. 7). 46% ([0.38, 0.53]) of the informal mentions
led to findable versions online and so did the 30% ([0.16, 0.47]) of the formal citations.
The annotation results also suggest that 78% ([0.61, 0.90]) of the formal citations and 35%
([0.28, 0.42]) of the informal mentions identified authorship and thus were able to give
credit. We interpret a likely reason for the difference between existing formal citations and
informal mentions in their strength to give credit and to identify versions: 92% ([0.77,
0.98]) of the formal software citations reference a publication, indicating clear authorship;
but a publication, even a “software paper”, is not often version specific. Current software

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 13/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

1.00-

0.75-
c
=]
-LO-: 0.50-
a
24
o

N - .

\& \& 20 \e O RG]
ﬁ,—@@p R\(\@'SQ & w@@“ 0@6\"\ o
.\¢a N é\.o(\ ‘3\'.\0‘\
et (\‘{\Q‘}
)

Figure 6 Functions of software mentions in our sample (error bars show 95% CI): Do software men-

tions enable the identification and discovery of software and its versions? Do software mentions credit

its contributors? Do software mentions provide further configuration detail that facilitates reuse?
Full-size Gl DOI: 10.7717/peerjcs.1022/fig-6

Formal citations Informal mentions

Proportion

Figure 7 How do existing formal citations and informal mentions of software function? In our sam-
ple, informal mentions tended to provide more specific versions; and formal citations credited better.
Most formal citations in our sample referenced a publication rather than the software artifact (Error bars
show 95% CI).

Full-size & DOT: 10.7717/peerjcs.1022/fig-7

citation advocacy has also recognized this: the credit given by publication is often one-off
and static, not sufficient to account for the dynamic authorship of the actual software work
across versions (Katz et al., 2019; Katz ¢» Smith, 2015).

Proper crediting has been a strong motivation for software citation advocacy. In our
sample, 42% ([0.36, 0.49]) of the software mentions recognized the creators or publishers
of the software. In contrast, Howison ¢ Bullard (2016) found around 77% ([0.70, 0.83])
of the mentions recognized creators or publishers. This is possibly driven by the 37%

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 w0 14/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-6
https://doi.org/10.7717/peerjcs.1022/fig-7
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

identifiable findable versioned version findable credited configuration details

2
i

Proportion
f)
-

Figure 8 Types of software mentions that serve different functions. Software mentions that give credit
were mostly driven by “like instrument” mentions and formal citations to a publication (Error bars show
95% CI).

Full-size Gal DOI: 10.7717/peerjcs.1022/fig-8

of the software mentions in their sample that cited a publication while only 17% in
ours did. When looking more closely (Fig. 8), crediting mentions in our sample were
mostly “like instrument” mentions (49% of all the crediting mentions; [0.39, 0.60]),
and secondarily, formal citation of articles (30% of all the crediting mentions; [0.21,
0.41]). As we will discuss in the later section, “like instrument” mentions mostly credited
proprietary software publishers, who are in less need of scholarly credit. In cases of software
citation, information about the proprietary software publisher probably provides more
accountability for the software involved and thus contributes to the integrity of scientific
communication.

Finally, 10% ([0.06, 0.15]) of the mentions gave some additional detail about the actual
configuration of mentioned software, usually specifying an operation environment or
parameter settings. Such detail could facilitate the verification of the scientific method
employed and the reuse of mentioned software.

Another key condition of reuse is whether the mentioned software is accessible and
retrievable. Facilitating access is one advocated function of software citation (Smith, Katz
¢ Niemeyer, 2016) as well as the conventional concern of scholarly citation (Howison ¢
Bullard, 2016). For the 155 distinct pieces of software mentioned in our sample, 97%
([0.92, 0.99]) was accessible online, 68% ([0.60, 0.75]) of the mentioned software had
free access, 47% ([0.39, 0.55]) had source code available, and 43% ([0.35, 0.51]) had both
source code available and permission to modify it, such as an open source license, or a
statement of waived copyrights (as the “source code modifiable” category in Fig. 9). In
general, mentioned software in this sample was more accessible and actionable than that
in Howison ¢ Bullard (2016), where 79% ([0.71, 0.85]) of the mentioned software was
accessible, 47% ([0.38, 0.56]) had free access, 32% ([0.24, 0.40]) had source code available,
and 20% ([0.14, 0.27]) had modifiable source code.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 15/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-8
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

3We did not annotate metadata only
associated with a minted DOI as the
unique and persistent identifier category
covers this possibility. Hence, we focus on
other kinds of interoperable metadata.

Proportion

Figure 9 Accessibility of the software mentioned (error bars show 95% CI). Accessible software in-
cludes software with restricted or paid access. Free access software includes those with open source code
available, or those in the form of executable or web services. Modifiable source code means the permission
to modify the source code is formally granted.

Full-size Gal DOI: 10.7717/peerjcs.1022/fig-9

Software metadata, archiving, and identification

Advocates’ recommendations, such as Katz et al. (2019), recognize that sufficient citation
metadata, software archiving, and unique and persistent identifiers are needed to cite the
software artifact in a human- and machine-actionable manner (Smith, Katz ¢~ Niemeyer,
2016; Katz et al., 2019). These practices are essential for software and its citation in scholarly
literature to become as visible as traditional academic publications, such as being identifiable
and indexable by discovery tools. We therefore examined whether the 155 distinct pieces
of software mentioned in our sample meet these advocacy recommendations.

Metadata availability was assessed by looking for publicly accessible metadata, including
those primarily focused on software citation (i.e., CITATION.cff (Druskat et al., 2021)
and CodeMeta (Jones et al., 2017)) and metadata stored in public information registries’
such as bio.tools (Ison et al., 2016). We also annotated the availability of language-specific
software metadata such as R DESCRIPTION/CITATION files, Python setup.py files, and
Java Maven pom. xml files, etc., considering that these are interoperable with CodeMeta
through crosswalks.

We searched for archival copies of mentioned software within Zenodo (European
Organization For Nuclear Research and OpenAIRE, 2013), Figshare (https:/figshare.com),
and Software Heritage (Cosmo & Zacchiroli, 2017) with their within-site search feature.
We considered searching institutional or domain-specific repositories but it is infeasible
to create an exhausted list of repositories for manual search. We also experimented with
using search engines like Google; it was neither effective to identify software archived in
specific archival repositories.

We assessed the use of unique and persistent identifiers by searching for DOIs, ARKs
(Archival Resource Keys), PURLs (Persistent URLs), and NBNs (National Bibliography

Du et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1022 16/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-9
https://figshare.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

e e &2
w = w
| : .

Proportion
S

Figure 10 The property rights of the software mentioned (error bars show 95% CI). Five software men-
tions did not have an accessible record online, and their licensing status consequently could not be identi-
fied.

Full-size Gal DOI: 10.7717/peerjcs.1022/fig-10

Numbers). We chose this list to focus on globally used and interoperable identifiers. We
considered other identifiers, including RRID, ASCL ID, and swMATH ID, some of which
are very useful in specific domains; but limited annotation labor turned our focus on
those globally used and indexed across systems of digital objects. Additionally, we did not
include SWHID (Software Heritage ID) (Software Heritage Development Documentation,
2021) because those are automatically generated once it is archived in Software Heritage,
already accounted for in our annotation about archiving.

As the advocacy recommendation efforts recognize, unique and persistent identification,
metadata accessibility, and archiving mechanisms can vary a lot between open source and
closed source software (Katz et al., 2019). We thus examine the software in our sample with
different property rights respectively. Particularly, we annotated closed source software
with some kind of paywall as “proprietary”, software with a standard open source license
as “open source”, and free access software without standard open source license as
“non-commercial” (e.g., public domain software or software with source code available
but not following standard open source practices). As Fig. 10 shows, in our sample, five
cases were not accessible and thus we cannot identify their licensing status; 24% ([0.18,
0.32]) of the mentioned software was proprietary while more was open source (42% of
the mentioned software; [0.34, 0.50]); in-between is non-commercial software (31% of
the mentioned software; [0.24, 0.39]). In Howison & Bullard’s sample, the corresponding
proportion of proprietary, non-commercial, and open source software were 32% ([0.24,
0.40]), 27% ([0.21, 0.36]), and 20% ([0.14, 0.27]). Therefore, we observe a larger portion
of open source software mentioned in this sample.

Overall, 30% ([0.23, 0.38]) of the mentioned software had at least one archived
copy within Zenodo, Figshare, or Software Heritage (Fig. 11). While archiving in these

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 17/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-10
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

—
Archived -
I
—
Metadata available -
1
—
Unique and persistent identifier -
1
o® o o o1° Ny
Proportion

value TRUE FALSE

Figure 11 Software archiving status, metadata availability, and persistent identification status in the
sample (error bars show 95% CI).
Full-size Gal DOT: 10.7717/peerjcs.1022/fig-11

repositories generates interoperable metadata for the archived item, slightly more software
in the sample had publicly available metadata (31% of the mentioned software; [0.24,
0.39]), implying some software had metadata created elsewhere. 25% ([0.19, 0.33]) of
the mentioned software had at least one unique and persistent identifier found among
possibilities of DOI, ARK, PURL, and NBN; the most found identifier is DOIL.

When examining across software with different kinds of property rights, we found
that 68% ([0.55, 0.78]) of the open source software in the sample was archived in one of
those aforementioned repositories (Fig. 12). During annotation, we noticed that this is
largely driven by those software projects with a GitHub repository archived in the Software
Heritage. Some non-commercial software in our sample with a source code repository on
GitHub was also found archived by the Software Heritage. Only 4% of the non-commercial
software was archived while no proprietary software in the sample was found archived.
Although it is in theory possible to archive proprietary software in a closed source archive
and only expose the unique identifier and metadata for discoverable records.

We have found publicly available metadata for 16% ([0.07, 0.33]) of the proprietary
software in our sample, mostly stored in a public registry (e.g., bio.tools). 17% ([0.08, 0.31])
of the non-commercial software had publicly accessible metadata, so as 52% ([0.40, 0.65])
of the open source software. But these available metadata are not oriented to citation. We
found no CITATION.cff or CodeMeta in our sample.

Open source software was more likely than non-commercial software to have a unique
and persistent identifier (58%, [0.46, 0.70] vs. 2%, [0.001, 0.12]); proprietary software had

none at all.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 18/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-11
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Archived = -
— £
Metadata available - 5
o8
Unique and persistent identifier = <
[=
Archived - =
[=]
_—
Metadata available - S
3
i
Unique and persistent identifier = g
—_—
Archived - Q
-]
S
.
Metadata available - @
[=3
&
—_—
Unique and persistent identifier - @
o® o o™ o®® ek
Proportion
value TRUE FALSE

Figure 12 The archiving, metadata, and persistent identification status of software with different
property rights in the sample (error bars show 95% CI). More than half of the open source software was
archived and had available metadata and a persistent identifier. Proprietary software in the sample did not
have any identified archival copies or persistent identifiers.

Full-size Gal DOI: 10.7717/peerjcs.1022/fig-12

Taken together, slightly more than half of the open source software in our sample
met advocacy recommendations for citation. Closed source software, including non-
commercial software without open source code available and proprietary software, indeed
rarely have a unique and persistent identifier neither being frequently archived. It is not
surprising given that archiving a piece of software is the primary way to obtain a unique
and persistent identifier. The lack of the persistent identifier perhaps chiefly reduces the
indexing potential of the closed source software. It is still valuable to reference proprietary
software used for research in manuscripts especially when its routines constitute part of
the research procedures.

How citation is requested
Past research has shown that software creators and publishers seek scholarly credit by
having their software cited (Howison ¢» Herbsleb, 2011). Howison ¢ Bullard (2016) found
18% ([0.13, 0.30]) of the mentioned software in their sample made a specific request for
their software work to be cited, usually in the online presences of the software such as on
a project web page. Bouquin et al. (2020) also looked for the preferred citations requested
by software projects in their sample, motivated by examining the quality of these sources
of citation information. Findings by these studies suggest that public citation requests do
not necessarily prioritize the software artifact itself. Instead, software authors may request
citations reference a software publication because those publications are more immediately
compatible with the current system of scholarly citation, reputation, and impact.

We are interested in understanding how common citation requests are, how software
projects make specific citation requests, to what extent they orient researchers’ citation
behavior, and whether they conform to the best practices recommended by the software

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 19/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-12
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

m
-

&
= 0.4-
=
o
o
o 0.2
0.0-
, ' !
\@ = < 2
W S) 2
\L'a\\@ B*OQQ (,/‘?*0 6\'3‘6
:_,\.9 (\‘ﬂ & (\\
i N N ¢!
o & oF
RS)
O@ G0
~uP

Figure 13 Locations of software citation request in the sample (error bars show 95% CI). Citation
metadata includes formats like CITATION file and domain-specific citation metadata such as R CITA-
TION/DESCRIPTION. No CITATION.cff or CodeMeta was found.

Full-size Gal DOI: 10.7717/peerjcs.1022/fig-13

citation advocacy. We therefore annotated the format and location of citation requests and
what citation target was requested by searching for specific software’s citation request and
looking through the online presence(s) of the software in our sample. Overall, we found
87 out of the 155 pieces of software (56%, [0.48, 0.64]) had at least one citation request
findable online (Fig. 13); but only 13% ([0.09, 0.19]) of the sampled mentions followed
these citation requests. Howison ¢ Bullard (2016), in comparison, found 18% ([0.13, 0.30])
of the software in their sample made citation requests and 7%([0.04, 0.11]) of the software
mentions followed these citation requests.

While we found an increase in citation requests and citations that follow them over
Howison and Bullard’s findings, citations that follow recommendations were still fairly
limited, varying by the type of software in question. 46% ([0.30, 0.63]) of the proprietary
software in our sample had at least one citation request while 2% ([0.004, 0.09]) of the
proprietary software mentions matched the requested citation. Half of the non-commercial
software (50%, [0.36, 0.64]) in the sample requested software citation; 13% ([0.06, 0,.26])
of the non-commercial software mentions matched the actual citation request. 70% ([0.58,
0.81]) of the open source software made citation request and 26% ([0.17, 0.38]) of their
mentions matched the request (see Fig. 14). In general, open source software projects made
more citation requests, and their requests were more followed.

Locations of citation requests

Half of the software in the sample (50%, [0.42, 0.58]) had a preferred citation
specified on a web page, mostly located on a software project website. Occasionally,
we found a software catalog online suggesting a citation for its software entries (e.g.,
Bioconductor (https:/www.bioconductor.org/) and ASCL (Nemiroff ¢ Wallin, 1999) do
$0). 7% ([0.04, 0.13]) of the software requested software citation in the README file
of a source code repository. Another 7% ([0.04, 0.13]) had a metadata file available

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 20/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-13
https://www.bioconductor.org/
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

0.75- 0.75- I

0.00- I 0.00-

Proportion
=
w0
o
Proportion
=
w
=

o
)
(&7

]
[ae]
o

.| B & . 3@
e? & oo ol e
o GO-:O“ Qeﬁ‘ & oeo® de\m
o 9) o
@O \.\o

Figure 14 (A) Proportion of the mentioned software with different property rights in the sample that
had citation request(s). (B) Proportion of the mentions of software with different property rights that
matched the citation request (Error bars show 95% CI).

Full-size Gal DOI: 10.7717/peerjcs.1022/fig-14

providing needed information for citation, especially the domain-specific format R
CITATION/DESCRIPTION was found to specify a citation request (Fig. 13).

Formats of citation requests

Software projects in our sample use different formats to make citation requests. It was
most common (54%, [0.45, 0.62]) to give a suggested citation in plain text format so
that users can copy and paste it into their manuscript (Fig. 15). The next most popular
format was a BibTeX formatted citation entry that can be used in the LaTeX document
preparation system; but, at 7% ([0.04, 0.13]) of our sample, even this second-most-poplar
citation request format was rare. Domain-specific citation metadata format, exclusively
the R CITATION/DESCRIPTION file, was used by 6% ([0.03, 0.11]) of the cases in our
sample; considering that it is a common expectation of the R language community, it
may be a convenient choice for software developers to make a citation request. Finally,
two pieces of software in our sample (1%, [0.002, 0.05]) used a CITATION file. These
were initially embraced by advocates for crediting research software work (Wilson, 2013);
because CITATION files are not machine-readable, advocates now prefer structured
citation metadata like Citation File Format (CFF) and CodeMeta (Kaiz et al., 2019). We
did not find any CITATION.cff or CodeMeta.json files, indicating these newer approaches
have yet to replace older ones.

Objects of citation requests

If a request was made, it was the most common to ask that users cite a software publication
(32%, [0.25, 0.4]). 20% ([0.14, 0.27]) of the software in our sample requested to cite the
software artifact itself, in accordance with advocates’ recommendations (Smith, Katz ¢
Niemeyer, 2016). 12% ([0.07, 0.18]) of the software in the sample requested that a domain
science publication be cited. Two software projects requested the project itself be cited. One

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 21/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-14
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

0.6-
= .
8%
=
o
a
o
L
E2-
5 L
X A o+ e §©
e e e A\ W
@ v \‘a.\"\\ ® 1\0$,5‘?60
0 o
2 o <@
¢
Wo

Figure 15 Formats of software citation requests in the sample (error bars show 95% CI).
Full-size &l DOI: 10.7717/peerjcs.1022/fig-15

project requested that a dataset be cited; in this specific case, the software is the byproduct
of the dataset.

It is worthwhile to look closely at these citation requests with respect to different software
property rights because citation preferences vary (Fig. 16A). Non-commercial and open
source software seemed to prefer a publication citation the most: 38% ([0.24, 0.53]) of
the non-commercial software in the sample requested to cite a software publication while
46% ([0.34, 0.59]) of the open source software requested so; 17% ([0.08, 0.30]) of the
non-commercial software and 15% ([0.08, 0.27]) of the open source software requested
that users cite a domain science publication. 4% ([0.007, 0.15]) of the non-commercial
software and 20% ([0.11, 0.32]) of the open source software requested that the software
itself be the target of the citation.

In contrast, only one proprietary software project in our sample requested that users cite
a software publication (2%, [0.001, 0.16]); 43% ([0.28, 0.60]) of the proprietary software
requested that authors cite the software itself; and the remaining 46% ([0.30, 0.63]) of
the proprietary software in the sample did not have a citation request available. This
is likely because proprietary software publishers have more incentives to promote their
software product but have less motive to engage in publishing about the science relevant to
their software. Meanwhile, for open source and non-commercial software projects, citing
their publication can more effectively demonstrate their scientific impact in the way most
relevant to those evaluating their careers.

We accordingly examine how the software with different kinds of property rights in our
sample is actually mentioned in publications (Fig. 16B). None of the mentions of proprietary
software in our sample came with any bibliographic references. Most commonly they were
referenced in the “like instrument” style (52%, [0.41, 0.63]), following the practices
of referring to scientific instruments and their vendors. Yet, both informal and “like
instrument” mentions ensure that the actual software artifact is referenced in publications.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 22/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-15
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

A B
1.0- 104
o B
E £
05- = 05 =
& 5
2 2

0.0- —I— 0.0-

1.0- - 1.0- -
S s § 3
oo =
Q05- g 205- g
o 3 2 3
g ﬁ : Elen :

ﬁ o o
0.0- L —I— = 0.0- o=
1.0- 1.0-
o 9
B @
=] 3
N i ; N ;
g g
- ﬁ : ﬁ —r— g -
5@ o o™ Lo oS e
ot B B e o
0 o o ™
@00 ot o e
50‘(9 QO‘(\ (1@

o

Figure 16 (A) What software projects with different property rights request to cite in the sample. (B)
How software with different property rights is mentioned in the sample (Error bars show 95% CI).
Full-size Gl DOTI: 10.7717/peerjcs.1022/fig-16

17% ([0.09, 0.30]) of the non-commercial software mentions and 33% ([0.23, 0.46]) of
the open source software mentions cited a publication; both were rarely mentioned like
instruments in our sample: Only 4% ([0.006, 0.14]) of non-commercial software mentions
and 3% ([0.004, 0.10]) of open source software mentions were instrument-like. Despite
frequent requests to cite publications, 78% ([0.63, 0.87]) of the non-commercial software
mentions and 61% ([0.49, 0.72]) of the open source software mentions were informal.
Although 20% ([0.11, 0.32]) of the open source software in our sample requested that users
cite the software artifact, only 3% of the open source mentions did so.

Comparison with prior findings
Finally, in Fig. 17 (on page 24), our annotation results are summarized in comparison
with results from Howison ¢» Bullard (2016). Given that the two sets of findings come from
two independent samples, we conducted a two-sample significance test to compare the
proportions calculated from annotations, using the prop. test function (Newcombe, 1998)
in base R. When the difference between the proportion values across the two samples is
tested as significant with p < .05, we have more statistical support to conclude a notable
change. These statistically significant changes are highlighted in Fig. 17. The In-text URL
and Cite to software categories have too few positive results (both under ten) to be an
adequate sample for such significance testing.

Overall, we found more informal mentions and less citations to publications for
referencing software in our sample. The mentioned software were more findable and more
frequently referenced with a specific version, and these versions were also more accessible.

Du et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1022 23/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-16
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Found proportions in the sample

Prior results in Howison &
Bullard (2016) (N=286)

Current results (N=210)

Types of software mentions

Informal mentions without
bibliographical references

In-text name only
Instrument-like
In-text URL

Cite to publication

Cite to software

56% (50%-62%)

31% (26%-37%)

19% (14%-24%)
5% (3%-8%)

37% (31%-43%)
0%

2 82% (76%-87%)

30% (24%-37%)
22% (17%-28%)
4% (2%-8%)

N 17% (12%-23%)
1% (0.4%-4%)

Functions of software mentions

Software identifiable
Software findable
Versioned software mention
Version findable

Credited

Configuration details provided

93% (88%-96%)

86% (80%-90%)

28% (22%-35%)
5% (3%-10%)

77% (70%-83%)
Not provided

96% (92%-98%)
2 96% (92%-98%)
2 46% (39%-53%)
2 43% (36%-50%)

N 42% (36%-49%)
10% (6%-15%)

Reguested citation

Citation matches request

7% (4%-11%)

7 13% (9%-19%)

Found proportions in the sample

Software projects in Howison &
Bulard (2016) (N=146)

Software projects in current
sample (N=155)

Property rights of mentioned software

Not accessible
Proprietary
Non-commercial

Open source licensed

21% (15%-29%)
32% (24%-40%)
27% (21%-36%)
20% (14%-27%)

N 3% (1%-8%)

24% (18%-32%)

31% (24%-39%)
A 42% (34%-50%)

Accessibility of mentioned software

Free access
Source code available

Source code modifiable

47% (39%-56%)
32% (24%-40%)
20% (14%-27%)

2 68% (60%-75%)
2 47% (39%-55%)
A 43% (35%-51%)

Citation request

Citation requested

18% (13%-30%)

A 56% (48%-64%)

Figure 17 Comparing current results with previous findings by Howison ¢ Bullard (2016). Statistically
significant differences are highlighted in colors, with orange denoting an increase and blue denoting a de-

crease, correspondingly.

Full-size &l DOIL: 10.7717/peerjcs.1022/fig-17

Du et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1022

24/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1022/fig-17
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

However, proper crediting of software contributors did not seem to have improved. We
see that mentioned software were more accessible; more mentioned software followed
standard open source practices and provided modifiable source code. An increasing
amount of software requested a preferred citation, but the actual mentions found did not
always follow these requests.

DISCUSSION

In this section, we assess the limitations of our findings, discuss explanations for why we
found the changes that we found, and discuss challenges for advocacy we perceived through
our study.

Limitations

In this paper, we compare our findings with those from previous publications, but our
ability to compare and ascribe differences to changes in practices over time is subject to
limitations. The sample in Howison ¢ Bullard (2016) was taken from articles published
between 2001 and 2010 in journals indexed in biology-related subject headings by the
Web of Science; the sample in this study was constructed from papers published since
2016 from the CORD-19 corpus, covering perhaps more diverse venues that include many
biology journals but only including content topically relevant to coronaviruses. Further,
Howison and Bullard randomly selected articles assessing all mentions within those articles,
whereas this study first used machine learning to identify mentions, then randomly selected
mentions for annotation. Both approaches work and shed light on our understanding of
how software is cited and citable in scholarly communication.

We also compare our findings with recommendations from software citation advocates.
We report these findings as a baseline for future comparison, rather than an assessment
of advocacy success, because it is likely that the time frame of publications chosen is
insufficient for assessing the impact of advocacy. While we chose publication dates that
came after advocacy recommendations, publication timelines can be long and we do not
know when these articles were drafted; some may have been drafted prior to the publication
of advocacy guidelines. Second, we do not know whether the authors, editors, or venues
were exposed to advocacy at all; publishing and promoting articles and principles about
software citation does not mean they are widely read. Our results should be understood as
relatively contemporaneous with the emergence of new software citation recommendations.

Finally, our findings about citation requests only reflect the moment of data collection
and annotation. These online records are subject to constant change; this means that the
citation request may have not been present when a publication that cited software was
authored. Nonetheless, earlier findings were subject to this same limitation so we think the
comparison between studies is useful.

Possible explanations of changes observed

We found that mentioned software were more available and accessible, included mention
of specific versions, and their source code was more frequently available, particularly as
standard open source. We reason that the increase of open source and accessible source

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 25/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

code has followed the overall rise of open source and particularly the availability of hosted
platforms for software development such as GitHub. Additional pressure may also have
come from funders, which increasingly signal support for open source code.

We also reason that the observed increase in the mention of software version numbers
could result from both the developers’ practice and the paper authors’ practice. On the
development side, more software has been produced and shared for research use. Software
production in general has also increasingly followed the practices of versioning, including
semantic versioning (e.g., Decan ¢ Mens, 2021) as a well established open source practice
that is reinforced by code hosting platforms (e.g., GitHub “releases” and git tags). On the
paper author side, it seems likely that the increased prevalence of software means that
authors of research papers have more awareness, and versioning may be more visible when
researchers install and update software through packaging systems (including the work of
resolving incompatibilities between versions or dependencies!). They may need to access
online help forums such as Stack Overflow and found the version could be crucial for
asking and searching for solutions. These software related practices can thus increase the
saliency of versioning experienced by authors, leaving impressions of what is important to
the scientific understanding of their work as well as reproducibility.

We were struck by the increase in software citation requests observed. We specifically
investigated whether this overall increase was consistent across types of software, suspecting
that proprietary software may make more explicit requests. However, we did not find
statistically significant differences between the proportions of proprietary, non-commercial,
and open source software that make citation requests, nor did we find differences with
respect to how well those requests are followed by paper authors. Thus, we conclude that
the practice of making citation requests is adopted by more overall. Software authors might
notice prominent requests by others and then be motivated and educated to add their own.
The presence of templates for language-specific features such as the citation() method in
R, and the prevalence and visibility of CITATION files at the top level of code repositories
may also influence software authors’ choices and behaviors. This raises hopes for software
visibility; recent promising efforts include GitHub moving citation request support to the
“front page” of repositories (GitHub, 2021).

Challenges for advocacy

Our findings suggest that standards making and advocacy efforts should take existing
practices into account, charting a course from current practices to hoped-for futures. For
example, for researchers using software, we argue that the “like instrument” approach
should be taken as a starting point for recommendations, such as re-purposing the location
field for software repositories rather than a meaningless geographic location of a software
publisher.

Our results about software archiving, general metadata availability, and persistent
identification also have further clarified directions in which advocacy efforts can propose
specific changes for different classes of software in terms of their property rights. We found
over half of the open source software was archived and uniquely identified, with metadata
available to fulfill citation needs. Some open source software projects were also aware

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 26/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

of requesting citation to the software artifact directly, but largely they were still cited by
their companion publications. In such cases, citing an available publication is probably a
convenient choice, which is more compatible with a researcher’s conventional authoring
workflow. As Bouguin et al. (2020) found that citation requests could be inconsistent when
multiple online presences of software exist, recommendations can suggest concrete steps for
making them actionable communications of citation expectations. The recommendations
in Katz et al. (2021) & Katz et al. (2019) are a key step to ensuring that guidance begins at
current practices for different kinds of software.

Another challenge rests with the citation requests of proprietary software (such as
SPSS). Our observations of these requests included many that we thought almost unusable
or incompatible with reference systems, including long-winded legalistic requests filled
with® and ™ symbols and disclaimers of warranty; they seemed to be written by lawyers
rather than specialists of scholarly communication. Advocacy in this area might therefore
need to address lawyers or encourage developers to take ownership of these requests. An
alternative might be for citation style guides to provide translation principles for these sorts
of requests.

The persistence of non-machine readable citation requests (e.g., free-text CITATION
files) might also be a starting point for recommendations, such as providing migration
paths and perhaps automatic synchronization between manual and machine-readable
requests, meeting software producers where they are. Recent efforts are moving in this
direction, including highlighting built-in language features for citation and advocating for
more languages to include these (e.g., Katz et al., 2021).

Maintenance costs are a likely challenge which advocacy should address. While the first
step of adoption is not easy, as the efforts by Allen (2021) showed, making software and
its citation human- and machine-actionable in the long term requires the upkeep of these
formats and practices. One technical reason why the software artifact is recommended
over its publication(s) as a citation target is that software is a very dynamic object. A
single publication at one time cannot credit all those who contributed to it throughout
its lifecycle. However, formal citation of the software artifact in a both machine- and
human-actionable manner also raises the requirement for the upkeep of citation metadata
and persistent identifier as the software artifact keeps to evolve. Bouquin et al. (2020) also
found that the discoverable citation requests could become outdated when new releases
of the software come out. It is likely that a non-trivial amount of regular work is needed
for a software project to keep themselves citable and communicate the up-to-date citation
expectations to their users.

Advocacy around persistent identifiers could also directly address the question of
automated identifiers vs. manually created identifiers. This became clear to us as we
reasoned around how to include the Software Heritage identifier in our annotation. The
current archiving mechanism of Software Heritage is designed as a response to concerns of
computational reproducibility (Alliez et al., 2020; Cosmo, Gruenpeter ¢~ Zacchiroli, 2020).
By its endeavor to archive all software source codes (Di Cosmio, 2018), Software Heritage
archives source codes crawled from major code hosting platforms. Software Heritage
archives copies, with automatically generated identifiers and metadata, which can be cited

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 27/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

as part of the research workflow reported in publications. They are open to researchers’
citation use and technically fulfill the advocacy recommendations for software citation;
although they do not necessarily reflect the software creators’ preference. In contrast, the
manual creation of identifiers is a costly exercise that indicates that someone thinks them
worth using. Language-specific software metadata and metadata stored in third party
registries are also alternative sources of citation information, and advocacy might consider
how researchers can be guided to use these available resources to cite software. However,
in face of multiple sources, researchers need to be able to identify the appropriate record.
We found, when searching for identifiers in systems that create them automatically, it
was very difficult for users to identify the canonical archived repository for a package

as distinguished from archived repositories of end-user code that forked the canonical
repository (or even repositories that merely used the code). These issues are parallel to the
recent discussion about non-creator-instigated software identification (Katz, Bouquin ¢
Chue Hong, 2019), commonly concerning appropriate use of third party created software
identification information.

The absence of persistent identifiers for proprietary software, whether manually or
automatically created, also suggests a need for advocacy to address this specifically. Current
infrastructures and policies that support software archiving and identification mechanism
are designed primarily for open source code (e.g., Research Data Alliance/FORCEI 1
Software Source Code Identification Working Group et al., 2020). As with citation metadata
and requests, it may be easier for third parties to create and maintain these, rather than
relying on influencing commercial software publishers. Indeed, software registries have
already stored public accessible metadata and even suggested citations for proprietary
software. Nonetheless, proprietary software are closed source and reuse would depend
on purchase and be limited. The right for third-party verification and replication of the
embodied methods or any future work directly built upon them is simply not granted.
Neither do their commercial publishers need academic credit. As Alliez et al. (2020) and
Cosmo, Gruenpeter ¢ Zacchiroli (2020) have well distinguished the need for citation from
that for reference, citation of the overall proprietary software project may be sufficient and
the aspiration of referencing the specific software artifact may be unneeded.

Finally, our experience during the data collection for this study mirrored the reality
in the age of “data deluge”: While it is promising that a variety of software metadata are
growing, accurate and comprehensive metadata retrieval is not straightforward for either
humans or machines. Software publishers may post their citation requests across online
locations using different formats and request citations of different publications for a single
piece of software across its version history. This adds the challenge of identifying linkages
between software and publications additional to the challenges of software identification
(Hata et al., 2021).

CONCLUSION

In this study, we examined a sample of software mentions automatically extracted from
PDFs of alarge corpus of coronavirus research published since 2016. We manually examined

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 28/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

a stratified random sample, validating the extraction infrastructure with a false positive
rate of 5%. We annotated our validated software mentions using an existing coding scheme
extended with recommendations from recent advocacy, demonstrating agreement in its
use among multiple annotators. In this way, we examined how software is mentioned, what
functions they realize, and to what extent they conform to advocacy recommendations for
software citation practices. In addition, we searched online to find and assess data about
software packages, including if and how they make citation requests.

We found improvements when compared with prior studies of software mentions.
We found increased mentions of software versions, increased adoption of open source
software, and improved software accessibility. We also found over half of the open source
software was archived, uniquely identified, and had metadata available, ready for citation
needs. Finally we found a greater proportion of projects made a specific citation request.

On the other hand, other practices had not improved, or even moved in the other
direction, compared to previous studies and advocates’ recommendations. We found
only a few formal citations directly to the software artifact and very little use of persistent
identifiers. Crediting the authors of software in the text was still rare, mostly due to
informal mentions. Worse, most mentions that do credit authors were of proprietary
software, which are less likely to need to receive credit in order to keep maintaining the
tool. Citation requests have potential to improve this situation, but we found these to be
followed only in few cases.

Organically established practices may provide appropriate starting points for advocacy.
For example, existing practices for software citation differ between proprietary, non-
commercial, and open source software. Our findings emphasize the long-standing practice
of “like instrument” mentions primarily for proprietary software, as well as divergent
practices in the identification, archiving, and metadata provision of software with different
property rights. Finally, they also differ in the common locations and widely used formats
for citation requests. Advocacy may be more effective by leveraging these existing practices
to minimize the behavioral change needed.

Future research suggests itself in three areas: publication type, decisions about software
citation, and examining change over time in relation to advocacy.

Different publication types may have different patterns of software mentions. While we
stratified the sample by impact factor and did not find any significant differences, we did
not separate by article type. For example, it is perhaps worthwhile to separate publication
venues specializing in publishing “software papers” that describe a software application or
an algorithm; their software mention and citation patterns could be different from other
domain science publications. Research could also separate pre-prints, or work to identify
the differences among more granular fields and sub-fields.

Future research is needed to understand decisions about software citation and their
pathway to publications. Citation requests do not yet seem effective, nor do we know much
about the decisions leading to this ineffectiveness. For example, requests may not be visible
to authors, or not visible at the right time. Even efforts to follow requests in a manuscript
may be undermined by style guides, journal instructions, reviewers, or editors. Advocacy
may not align well with the pressures involved during the production and publishing of

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 29/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

4For example, in preparation of this
publication, reviewers pointed out a
missing URL in a dataset entry in our
reference list. Even with our heightened
attention given the topic of this paper, this
error made it into the PDF; inquiry showed
that the initial URL entry in the BibTeX
had become masked in the toolchain
from BibTeX through to the Peer] LaTeX
template and citation style specified for
PDF rendering. We used a work-around in
BibTeX to make the URL reference visible.

articles. Studying collections of drafts over time through the article creation process could
create greater understanding of the manner in which mentions and reference lists are
created and open up new locations or emphases for advocacy.”

Finally, future research should examine change over time, seeking evidence about
effective advocacy. We hope that our extraction infrastructure, sampling approach, and
content analysis scheme can be useful for comparable studies. Researchers can process
future collections of PDFs produced by different groups, stratify, randomly sample
mentions, and annotate and compare results to observe change. These observations could
be focused on specific advocacy efforts, including micro efforts, such as comparing the
publications of those exposed to specific training or interventions with those unexposed.
Groups could be individuals, classes of individuals (such as software producers or early-
career scholars), or larger groups such as users of specific software, classes of software
or techniques, or specific fields. Assessments of interventions should be designed to
give sufficient time for interventions to operate; timing of citation requests can be then
compared to the period in which a study was authored and published.

Understanding patterns of software citation from research publications over time
can inform advocacy and policy-making efforts to improve the visibility and rewards of
software work in science. Our study suggests that software citation practices have not
changed substantially in the past five years. Advocating for change takes time and we
hope these results can provide a baseline against which to measure change in the future.
Nonetheless, we think it possible that the behavior change required to implement new
forms of visibility for software in publications may be too complex for quick uptake.
Automated solutions that do not require behavioral change, such as entity extraction from
PDFs to build software impact indexes, clearly have a role to play, both as a resource for
improving advocacy and as a fallback for visibility where publication practices are slow to
change.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Alfred P. Sloan Foundation (Award Number: 2016-7209)
and the Gordon and Betty Moore Foundation (Grant Number: 8622). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Alfred P. Sloan Foundation: 2016-7209.

Gordon and Betty Moore Foundation: 8622.

Competing Interests

Patrice Lopez is employed by science-miner.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022

30/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Author Contributions

e Caifan Du conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

e Johanna Cohoon performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.

e Patrice Lopez performed the computation work, authored or reviewed drafts of the
article, built the data pipeline and extraction systems, and approved the final draft.

e James Howison conceived and designed the experiments, performed the experiments,

analyzed the data, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at Zenodo: Patrice Lopez, Caifan Du, Hannah Cohoon & James
Howison. (2021). Softcite software mention extraction from the CORD-19 publications
(0.3.0) [Data set]. Zenodo. https:/doi.org/10.5281/zenodo.5235661.

The analysis code is available at GitHub: https:/github.com/caifand/cord19-sw-analysis.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1022#supplemental-information.

REFERENCES

Allen A. 2021. Citation method, please? a case study in astrophysics. ArXiv preprint.
arXiv:2111.12574.

Allen A, Schmidt J. 2014. Looking before leaping: creating a software registry. ArXiv
preprint. arXiv:1407.5378.

Allen A, Teuben PJ, Ryan PW. 2018. Schroedinger’s code: a preliminary study on re-
search source code availability and link persistence in astrophysics. The Astrophysical
Journal Supplement Series 236(1):10 DOI 10.3847/1538-4365/aab764.

Alliez P, Cosmo RD, Guedj B, Girault A, Hacid M-S, Legrand A, Rougier N. 2020.
Attributing and referencing (research) software: best practices and outlook from
Inria. Computing in Science Engineering 22(1):39-52.

Article Dataset Builder. 2020-2021. Available at https://¢ithub.com/kermitt2/article-
dataset-builder.

Beltagy I, Lo K, Cohan A. 2019. Scibert: a pretrained language model for scientific text.
ArXiv preprint. arXiv:1903.10676.

Bouquin DR, Chivvis DA, Henneken E, Lockhart K, Muench A, Koch J. 2020. Credit
lost: two decades of software citation in astronomy. The Astrophysical Journal
Supplement Series 249(1):8 DOT 10.3847/1538-4365/ab7be6.

Bradford SC. 1934. Sources of information on specific subjects. Engineering 137:85-86.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 31/35

https://peerj.com
https://doi.org/10.5281/zenodo.5235661
https://github.com/caifand/cord19-sw-analysis
http://dx.doi.org/10.7717/peerj-cs.1022#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1022#supplemental-information
http://arXiv.org/abs/2111.12574
http://arXiv.org/abs/1407.5378
http://dx.doi.org/10.3847/1538-4365/aab764
https://github.com/kermitt2/article-dataset-builder
https://github.com/kermitt2/article-dataset-builder
http://arXiv.org/abs/1903.10676
http://dx.doi.org/10.3847/1538-4365/ab7be6
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Brase J, Lautenschlager M, Sens I. 2015. The tenth anniversary of assigning DOI
names to scientific data and a five year history of DataCite. D-Lib Magazine
21(1/2):01brase DOI 10.1045/january2015-brase.

Brookes B. 1985. “Sources of information on specific subjects” by sc bradford. Journal of
Information Science 10(4):173—-175 DOI 10.1177/016555158501000406.

Chue Hong NP, Allen A, Gonzalez-Beltran A, De Waard A, Smith AM, Robinson
G, Jones C, Bouquin D, Katz DS, Kennedy D, Ryder G, Hausman J, Hwang L,
Jones MB, Harrison M, Crosas M, Wu M, Lowe P, Haines R, Edmunds S, Stall S,
Swaminathan S, Druskat S, Crick T, Morrell T, Pollard T. 2019. Software citation
checklist for authors. Technical report. Zenodo. Available at https://zenodo.org/
record/3479199.

Conway JR, Lex A, Gehlenborg N. 2017. Upsetr: an r package for the visualiza-
tion of intersecting sets and their properties. Bioinformatics 33(18):2938-2940
DOI 10.1093/bioinformatics/btx364.

Cosmo RD, Gruenpeter M, Zacchiroli S. 2020. Referencing source code artifacts: a
separate concern in software citation. Computing in Science Engineering 22(2):33—43
DOI 10.1109/MCSE.2019.2963148.

Cosmo RD, Zacchiroli S. 2017. Software heritage: why and how to preserve software
source code. In: iPRES 2017: 14th international conference on digital preservation,
Kyoto, Japan.

Decan A, Mens T. 2021. What do package dependencies tell us about semantic
versioning? IEEE Transactions on Software Engineering 47(6):1226—1240
DOI 10.1109/TSE.2019.2918315.

Di Cosmo R. 2018. Software heritage: why and how we collect, preserve and share all the
software source code. In: 2018 IEEE/ACM 40th international conference on software
engineering: software engineering in society (ICSE-SEIS). Piscataway: IEEE, 2-2.

Druskat S, Hong C, Haines R, Baker J. 2021. Citation File Format (CFF)—Specifications.
Available at https://citation-file-format.github.io/.

Du C, Cohoon J, Lopez P, Howison J. 2021a. Softcite dataset: a dataset of software men-
tions in biomedical and economic research publications. Journal of the Association for
Information Science and Technology 72(7):870-884 DOI 10.1002/asi.24454.

Du C, Cohoon J, Priem J, Piwowar HA, Meyer C, Howison J. 2021b. CiteAs: better
software through sociotechnical change for better software citation. In: CSCW *21
companion, virtual event.

European Organization For Nuclear Research and OpenAIRE. 2013. Zenodo. Available
at https://about.zenodo.org.

GitHub. 2021. About CITATION files. Available at https://docs.github.com/en/github/
creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-
citation-files.

GROBID. 2008-2021. GROBID. Available at https://github.com/kermitt2/grobid.

Habeas Corpus. 2021. Habeas Corpus. Available at hitps://github.com/softwaresaved/
habeas-corpus.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 32/35

https://peerj.com
http://dx.doi.org/10.1045/january2015-brase
http://dx.doi.org/10.1177/016555158501000406
https://zenodo.org/record/3479199
https://zenodo.org/record/3479199
http://dx.doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1109/MCSE.2019.2963148
http://dx.doi.org/10.1109/TSE.2019.2918315
https://citation-file-format.github.io/
http://dx.doi.org/10.1002/asi.24454
https://about.zenodo.org
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files
https://github.com/kermitt2/grobid
https://github.com/softwaresaved/habeas-corpus
https://github.com/softwaresaved/habeas-corpus
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Hata H, Guo JL, Kula RG, Treude C. 2021. Science-software linkage: the challenges of
traceability between scientific knowledge and software artifacts. ArXiv preprint.
arXiv:2104.05891.

Hong NPC, Katz DS, Barker M, Lamprecht AL, Martinez C, Psomopoulos FE, Harrow
J, Castro L], Gruenpeter M, Martinez PA, Honeyman T, Struck A, Lee A, Loewe
A, Van Werkhoven B, Jones C, Garijo D, Plomp E, Genova F, Shanahan H, Leng
J, Hellstrom M, Sinha M, Kuzak M, Herterich P, Zhang Q, Islam S, Sansone S-

A, Pollard T, Atmojo UD, Williams A, Czerniak A, Niehues A, Fouilloux AC,
Desinghu B, Richard C, Gray C, Erdmann C, Niist D, Tartarini D, Anzt H, Todorov
I, McNally J, Moldon J, Burnett], Belhajjame K, Sesink L, Hwang L, Roberto M,
Wilkinson MD, Servillat M, Liffers M, Fox M, Lynch N, Lavanchy PM, Gesing

S, Stevens S, Cuesta M, Peroni S, Soiland-Reyes S, Bakker T, Rabemanantsoa

T, Sochat V, Yehudi Y. 2021. FAIR principles for research software (FAIR4RS
Principles). Research Data Alliance DOI 10.15497/RDA00065.

Howison J, Bullard J. 2016. Software in the scientific literature: problems with see-
ing, finding, and using software mentioned in the biology literature. Journal
of the Association for Information Science and Technology 67(9):2137-2155
DOI 10.1002/as1.23538.

Howison J, Herbsleb JD. 2011. Scientific software production: incentives and collabora-
tion. In: Proceedings of the ACM 2011 conference on Computer supported cooperative
work. New York: ACM, 513-522.

Ison J, Rapacki K, Ménager H, Kalas M, Rydza E, Chmura P, Anthon C, Beard N, Berka
K, Bolser D, Booth T, Bretaudeau A, Brezovsky J, Casadio R, Cesareni G, Coppens
F, Cornell M, Cuccuru G, Davidsen K, Vedova GD, Dogan T, Doppelt-Azeroual
O, Emery L, Gasteiger E, Gatter T, Goldberg T, Grosjean M, Griining B, Helmer-
Citterich M, Ienasescu H, Ioannidis V, Jespersen MC, Jimenez R, Juty N, Juvan
P, Koch M, Laibe C, Li J-W, Licata L, Mareuil F, Miceti¢ I, Friborg RM, Moretti S,
Morris C, Moéller S, Nenadic A, Peterson H, Profiti G, Rice P, Romano P, Roncaglia
P, Saidi R, Schafferhans A, Schwiammle V, Smith C, Sperotto MM, Stockinger
H, Varekova RS, Tosatto SCE, Torre VDL, Uva P, Via A, Yachdav G, Zambelli
F, Vriend G, Rost B, Parkinson H, Langreen P, Brunak S. 2016. Tools and data
services registry: a community effort to document bioinformatics resources. Nucleic
Acids Research 44(D1):D38-D47 DOI 10.1093/nar/gkv1116.

Jones MB, Boettiger C, Mayes AC, Smith A, Slaughter P, Niemeyer K, Gil Y, Fenner
M, Nowak K, Hahnel M, Coy L, Allen A, Crosas M, Sands A, Chu. Hong N, Cruse
P, Katz DS, Goble C. 2017. Codemeta: an exchange schema for software metadata.
version 2.0. KNB Data Repository DOI 10.5063/schema/codemeta-2.0.

Kanakia A, Wang K, Dong Y, Xie B, Lo K, Shen Z, Wang LL, Huang C, Eide D,
Kohlmeier S, Wu C-H. 2020. Mitigating biases in CORD-19 for analyzing
COVID-19 literature. Frontiers in Research Metrics and Analytics 5:596624
DOI 10.3389/frma.2020.596624.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 33/35

https://peerj.com
http://arXiv.org/abs/2104.05891
http://dx.doi.org/10.15497/RDA00065
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1093/nar/gkv1116
http://dx.doi.org/10.5063/schema/codemeta-2.0
http://dx.doi.org/10.3389/frma.2020.596624
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Katz DS, Bouquin D, Chue Hong N. 2019. Towards software non-creator-instigated
identification (NCI) and citation. Available at hitps://danielskatzblog.wordpress.com/
2019/03/05/towards-software-non-creator-instigated-identification-nci-and-citation/.

Katz DS, Bouquin D, Hong NPC, Hausman J, Jones C, Chivvis D, Clark T, Crosas M,
Druskat S, Fenner M, Gillespie T, Gonzalez-Beltran A, Gruenpeter M, Habermann
T, Haines R, Harrison M, Henneken E, Hwang L, Jones MB, Kelly AA, Kennedy
DN, Leinweber K, Rios F, Robinson CB, Todorov I, Wu M, Zhang Q. 2019.
Software citation implementation challenges. ArXiv preprint. arXiv:1905.08674.

Katz DS, Hong NPC, Clark T, Muench A, Stall S, Bouquin D, Cannon M, Edmunds
S, Faez T, Feeney P, Fenner M, Friedman M, Grenier G, Harrison M, Heber J,
Leary A, MacCallum C, Murray H, Pastrana E, Perry K, Schuster D, Stockhause
M, Yeston J. 2021. Recognizing the value of software: a software citation guide.
F1000Research 9:1257 DOI 10.12688/f1000research.26932.2.

Katz DS, Smith AM. 2015. Transitive credit and json-1d. Journal of Open Research
Software 3(1):e7 DOI 10.5334/jors.by.

Kriiger F, Schindler D. 2020. A literature review on methods for the extraction of usage
statements of software and data. Computing in Science ¢ Engineering 22(1):26-38.

Lopez P. 2009. Grobid: combining automatic bibliographic data recognition and term
extraction for scholarship publications. In: Agosti M, Borbinha J, Kapidakis S,
Papatheodorou C, Tsakonas G, eds. Research and advanced technology for digital
libraries. ECDL 2009. Lecture notes in computer science, vol 5714. Berlin, Heidelberg:
Springer, 473—474 DOI 10.1007/978-3-642-04346-8_62.

Lopez P, Du C, Cohoon H, Howison J. 2021a. Softcite software mention extraction from
the CORD-19 publications. DOI 10.5281/zenodo.5140437.

Lopez P, Du C, Cohoon J, Ram K, Howison J. 2021b. Mining software entities in
scientific literature: document-level ner for an extremely imbalance and large-scale
task. In: Proceedings of the 30th ACM international conference on information and
knowledge management (CIKM °21). New York: ACM.

Mayernik MS, Hart DL, Maull KE, Weber NM. 2017. Assessing and tracing the
outcomes and impact of research infrastructures. Journal of the Association for
Information Science and Technology 68(6):1341-1359 DOI 10.1002/asi.23721.

Monteil A, Gonzalez-Beltran A, Ioannidis A, Allen A, Lee A, Bandrowski A, Wilson BE,
Mecum B, Du CF, Robinson C, Garijo D, Katz DS, Long D, Milliken G, Ménager
H, Hausman J, Spaaks JH, Fenlon K, Vanderbilt K, Hwang L, Davis L, Fenner M,
Crusoe MR, Hucka M, Wu M, Hong NC, Teuben P, Stall S, Druskat S, Carnevale T,
Morrell T. 2020. Nine best practices for research software registries and repositories:
a concise guide. ArXiv preprint. arXiv:2012.13117.

Muench A, Accomazzi A, Hol. Nielsen L, Blanco-Cuaresma S, Henneken EA, Ioannidis-
Pantopikos A, Nowak K, Steffen J. 2020. Asclepias: an infrastructure project to
improve software citation across astronomy. In: Astronomical data analysis software
and systems XXVII ADS. 522. 711.

Nemiroff R, Wallin J. 1999. The astrophysics source code library: http://www.ascl.net.
Bulletin of the American Astronomical Society 31:885.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 34/35

https://peerj.com
https://danielskatzblog.wordpress.com/2019/03/05/towards-software-non-creator-instigated-identification-nci-and-citation/
https://danielskatzblog.wordpress.com/2019/03/05/towards-software-non-creator-instigated-identification-nci-and-citation/
http://arXiv.org/abs/1905.08674
http://dx.doi.org/10.12688/f1000research.26932.2
http://dx.doi.org/10.5334/jors.by
http://dx.doi.org/10.1007/978-3-642-04346-8_62
http://dx.doi.org/10.5281/zenodo.5140437
http://dx.doi.org/10.1002/asi.23721
http://arXiv.org/abs/2012.13117
http://dx.doi.org/10.7717/peerj-cs.1022

PeerJ Computer Science

Newcombe RG. 1998. Interval estimation for the difference between independent
proportions: comparison of eleven methods. Statistics in Medicine 17(8):873—-890
DOI 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-1.

Pan X, Yan E, Cui M, Hua W. 2018. Examining the usage, citation, and diffusion patterns
of bibliometric mapping software: a comparative study of three tools. Journal of
Informetrics 12(2):481-493 DOI 10.1016/].j01.2018.03.005.

Piwowar HA, Priem J. 2016. Depsy: valuing the software that powers science. GitHub.
Available at https://github.com/Impactstory/depsy-research.

R Core Team. 2019. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at https://www.r-project.org.

Research Data Alliance/FORCE11 Software Source Code Identification Working
Group, Allen A, Bandrowski A, Chan P, Di Cosmo R, Fenner M, Garcia L, Gru-
enpeter M, Jones CM, Katz DS, Kunze J, Schubotz M, Todorov IT. 2020. Software
source code identification use cases and identifier schemes for persistent software
source code identification. Research Data Alliance DOI 10.15497/RDA00053.

Schindler D, Bensmann F, Dietze S, Kriiger F. 2021. SoMeSci—Software Mentions in
Science. Type: dataset. DOI 10.5281/zenodo.4968738.

Schindler D, Bensmann F, Dietze S, Kriiger F. 2022. The role of software in science:

a knowledge graph-based analysis of software mentions in pubmed central. Peer]
Computer Science 8:e835 DOI 10.7717/peerj-cs.835.

Smith AM, Katz DS, Niemeyer KE. 2016. Software citation principles. Peer] Computer
Science 2:e86 DOI 10.7717/peerj-cs.86.

Softcite Software Mention Recognizer. 2018-2021. Softcite software mention recogni-
tion service. Available at htips://github.com/ourresearch/software-mentions.

Software Heritage Development Documentation. 2021. SoftWare Heritage persistent
IDentifiers (SWHIDs)—Software Heritage-Development Documentation docu-
mentation. Available at https://docs.softwareheritage.org/devel/swh-model/persistent-
identifiers.html (accessed on 25 Novemeber 2021).

Wade AD, Williams I. 2021. CORD-19 Software Mentions. Zenodo. Available at hitps:
//zenodo.org/record/4582776.

Wang LL, Lo K, Chandrasekhar Y, Reas R, Yang J, Burdick D, Eide D, Funk K, Katsis
Y, Kinney RM, Li Y, Liu Z, Merrill W, Mooney P, Murdick DA, Rishi D, Sheehan J,
Shen Z, Stilson B, Wade AD, Wang K, Wang NXR, Wilhelm C, Xie B, Raymond
DM, Weld DS, Etzioni O, Kohlmeier S. 2020. CORD-19: the COVID-19 open
research dataset. In: Proceedings of the 1st workshop on NLP for COVID-19 at ACL
2020, online. Columbus: Association for Computational Linguistics.

Wilson R. 2013. Encouraging citation of software—introducing CITATION files.
Available at https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-

software-introducing-citation-files.

Du et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1022 35/35

https://peerj.com
http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
http://dx.doi.org/10.1016/j.joi.2018.03.005
https://github.com/Impactstory/depsy-research
https://www.r-project.org
http://dx.doi.org/10.15497/RDA00053
http://dx.doi.org/10.5281/zenodo.4968738
http://dx.doi.org/10.7717/peerj-cs.835
http://dx.doi.org/10.7717/peerj-cs.86
https://github.com/ourresearch/software-mentions
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://zenodo.org/record/4582776
https://zenodo.org/record/4582776
https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-software-introducing-citation-files
https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-software-introducing-citation-files
http://dx.doi.org/10.7717/peerj-cs.1022

Submitted 28 September 2021
Accepted 9 June 2022
Published 8 August 2022

Corresponding author
Daniel Garijo, daniel.garijo@upm.es

Academic editor
Varun Gupta

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.1023

© Copyright
2022 Garijo et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Nine best practices for research software
registries and repositories

Daniel Garijo', Hervé Ménager”, Lorraine Hwang’, Ana Trisovic®,
Michael Hucka®, Thomas Morrell®, Alice Allen®, Task Force on Best
Practices for Software Registries”, and SciCodes Consortium®

! Universidad Politécnica de Madrid, Madrid, Spain

% Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France

3 University of California, Davis, Davis, California, United States

* Harvard University, Boston, Massachusetts, United States

5 California Institute of Technology, Pasadena, California, United States

6 University of Maryland, College Park, MD, United States

7 FORCEL11 Software Citation Implementation Working Group

8 Consortium of Scientific Software Registries and Repositories

ABSTRACT

Scientific software registries and repositories improve software findability and
research transparency, provide information for software citations, and foster
preservation of computational methods in a wide range of disciplines. Registries and
repositories play a critical role by supporting research reproducibility and
replicability, but developing them takes effort and few guidelines are available to help
prospective creators of these resources. To address this need, the FORCE11 Software
Citation Implementation Working Group convened a Task Force to distill the
experiences of the managers of existing resources in setting expectations for all
stakeholders. In this article, we describe the resultant best practices which include
defining the scope, policies, and rules that govern individual registries and
repositories, along with the background, examples, and collaborative work that went
into their development. We believe that establishing specific policies such as those
presented here will help other scientific software registries and repositories better
serve their users and their disciplines.

Subjects Computer Education, Databases, Digital Libraries
Keywords Best practices, Research software repository, Research software registry, Software
metadata, Repository policies, Research software registry guidelines

INTRODUCTION

Research software is an essential constituent in scientific investigations (Wilson et al., 2014;
Momcheva & Tollerud, 2015; Hettrick, 2018; Lamprecht et al., 2020), as it is often used to
transform and prepare data, perform novel analyses on data, automate manual processes,
and visualize results reported in scientific publications (Howison ¢ Herbsleb, 2011).
Research software is thus crucial for reproducibility and has been recognized by the
scientific community as a research product in its own right—one that should be properly
described, accessible, and credited by others (Smith, Katz ¢ Niemeyer, 2016; Chue Hong
et al., 2021). As a result of the increasing importance of computational methods,
communities such as Research Data Alliance (RDA) (Berman & Crosas, 2020) (https://
www.rd-alliance.org/) and FORCE11 (Bourne et al., 2012) (https://www.forcell.org/)

How to cite this article Garijo D, Ménager H, Hwang L, Trisovic A, Hucka M, Morrell T, Allen A. et al., 2022. Nine best practices for
research software registries and repositories. Peer] Comput. Sci. 8:e1023 DOI 10.7717/peerj-cs.1023

https://github.com/force11/force11-sciwg
https://github.com/force11/force11-sciwg
https://www.rd-alliance.org/
https://www.rd-alliance.org/
https://www.force11.org/
http://dx.doi.org/10.7717/peerj-cs.1023
mailto:daniel.—garijo@—upm.—es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1023
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

emerged to enable collaboration and establish best practices. Numerous software
services that enable open community development of and access to research source
code, such as GitHub (https://github.com/) and GitLab (https://gitlab.com), appeared
and found a role in science. General-purpose repositories, such as Zenodo (CERN ¢
OpenAIRE, 2013) and FigShare (Thelwall ¢» Kousha, 2016), have expanded their scope
beyond data to include software, and new repositories, such as Software Heritage

(Di Cosmo & Zacchiroli, 2017), have been developed specifically for software. A large
number of domain-specific research software registries and repositories have emerged for
different scientific disciplines to ensure dissemination and reuse among their communities
(Gentleman et al., 2004; Peckham, Hutton & Norris, 2013; Greuel ¢ Sperber, 2014; Allen &
Schmidt, 2015; Gil, Ratnakar & Garijo, 2015; Gil et al., 2016).

Research software registries are typically indexes or catalogs of software metadata,
without any code stored in them; while in research software repositories, software is both
indexed and stored (Lamprecht et al., 2020). Both types of resource improve software
discoverability and research transparency, provide information for software citations, and
foster preservation of computational methods that might otherwise be lost over time,
thereby supporting research reproducibility and replicability. Many provide or are
integrated with other services, including indexing and archival services, that can be
leveraged by librarians, digital archivists, journal editors and publishers, and researchers
alike.

Transparency of the processes under which registries and repositories operate helps
build trust with their user communities (Yakel et al., 2013; Frank et al., 2017). However,
many domain research software resources have been developed independently, and thus
policies amongst such resources are often heterogeneous and some may be omitted.
Having specific policies in place ensures that users and administrators have reference
documents to help define a shared understanding of the scope, practices, and rules that
govern these resources.

Though recommendations and best practices for many aspects of science have been
developed, no best practices existed that addressed the operations of software registries and
repositories. To address this need, a Best Practices for Software Registries Task Force
was proposed in June 2018 to the FORCE11 Software Citation Implementation Working
Group (SCIWG) (https://github.com/forcell/forcel1-sciwg). In seeking to improve the
services software resources provide, software repository maintainers came together to learn
from each other and promote interoperability. Both common practices and missing
practices unfolded in these exchanges. These practices led to the development of nine
best practices that set expectations for both users and maintainers of the resource by
defining management of its contents and allowed usages as well as clarifying positions on
sensitive issues such as attribution.

In this article, we expand on our pre-print “Nine Best Practices for Research
Software Registries and Repositories: A Concise Guide” (Task Force on Best Practices
for Software Registries et al., 2020) to describe our best practices and their development.
Our guidelines are actionable, have a general purpose, and reflect the discussion of a
community of more than 30 experts who handle over 14 resources (registries or

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 2/29

https://github.com/
https://gitlab.com
https://github.com/force11/force11-sciwg
https://github.com/force11/force11-sciwg
https://github.com/force11/force11-sciwg
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

repositories) across different scientific domains. Each guideline provides a rationale,
suggestions, and examples based on existing repositories or registries. To reduce repetition,
we refer to registries and repositories collectively as “resources.”

The remainder of the article is structured as follows. We first describe background
and related efforts in “Background”, followed by the methodology we used when
structuring the discussion for creating the guidelines (Methodology). We then describe the
nine best practices in “Best Practices for Repositories and Registries”, followed by a
discussion (Discussion). “Conclusions” concludes the article by summarizing current
efforts to continue the adoption of the proposed practices. Those who contributed to the
development of this article are listed in Appendix A, and links to example policies are given
in Appendix B. Appendix C provides updated information about resources that have
participated in crafting the best practices and an overview of their main attributes.

BACKGROUND

In the last decade, much was written about a reproducibility crisis in science (Baker, 2016)
stemming in large part from the lack of training in programming skills and the
unavailability of computational resources used in publications (Merali, 2010; Peng, 2011;
Morin et al., 2012). On these grounds, national and international governments have
increased their interest in releasing artifacts of publicly-funded research to the public
(Office of Science & Technology Policy, 2016; Directorate-General for Research &
Innovation (European Commission), 2018; Australian Research Council, 2018; Chen et al.,
2019; Ministére de 'Enseignement supérieur, de la Recherche et de I'Innovation, 2021),
and scientists have appealed to colleagues in their field to release software to improve
research transparency (Weiner et al., 2009; Barnes, 2010; Ince, Hatton ¢ Graham-
Cumming, 2012) and efficiency (Grosbol ¢» Tody, 2010). Open Science initiatives such as
RDA and FORCEL11 have emerged as a response to these calls for greater transparency and
reproducibility. Journals introduced policies encouraging (or even requiring) that data
and software be openly available to others (Editorial Staff, 2019; Fox et al., 2021). New tools
have been developed to facilitate depositing research data and software in a repository
(Baruch, 2007; CERN & OpenAIRE, 2013; Di Cosmo & Zacchiroli, 2017; Clyburne-Sherin,
Fei & Green, 2019; Brinckman et al., 2019; Trisovic et al., 2020) and consequently,

make them citable so authors and other contributors gain recognition and credit for their
work (Soito & Hwang, 2017; Du et al., 2021).

Support for disseminating research outputs has been proposed with FAIR and FAIR4RS
principles that state shared digital artifacts, such as data and software, should be Findable,
Accessible, Interoperable, and Reusable (Wilkinson et al., 2016; Lamprecht et al., 2020;
Katz, Gruenpeter ¢ Honeyman, 2021; Chue Hong et al., 2021). Conforming with the FAIR
principles for published software (Lamprecht et al., 2020) requires facilitating its
discoverability, preferably in domain-specific resources (Jiménez et al., 2017). These
resources should contain machine-readable metadata to improve the discoverability
(Findable) and accessibility (Accessible) of research software through search engines or
from within the resource itself. Furthering interoperability in FAIR is aided through the
adoption of community standards e.g., schema.org (Guha, Brickley & Macbeth, 2016) or

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 3/29

http://schema.org
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

the ability to translate from one resource to another. The CodeMeta initiative (Jones et al.,
2017) achieves this translation by creating a “Rosetta Stone” which maps the metadata
terms used by each resource to a common schema. The CodeMeta schema (https://
codemeta.github.io/) is an extension of schema.org which adds ten new fields to represent
software-specific metadata. To date, CodeMeta has been adopted for representing software
metadata by many repositories (https://hal.inria.fr/hal-01897934v3/codemeta).

As the usage of computational methods continues to grow, recommendations for
improving research software have been proposed (Stodden et al., 2016) in many areas of
science and software, as can be seen by the series of “Ten Simple Rules” articles offered by
PLOS (Dashnow, Lonsdale ¢» Bourne, 2014), sites such as AstroBetter (https://www.
astrobetter.com/), courses to improve skills such as those offered by The Carpentries
(https://carpentries.org/), and attempts to measure the adoption of recognized best
practices (Serban et al., 2020; Trisovic et al., 2022). Our quest for best practices
complements these efforts by providing guides to the specific needs of research software
registries and repositories.

METHODOLOGY

The best practices presented in this article were developed by an international Task Force
of the FORCEL11 Software Citation Implementation Working Group (SCIWG). The Task
Force was proposed in June 2018 by author Alice Allen, with the goal of developing a list of
best practices for software registries and repositories. Working Group members and a
broader group of managers of domain specific software resources formed the inaugural
group. The resulting Task Force members were primarily managers and editors of
resources from Europe, United States, and Australia. Due to the range in time zones, the
Task Force held two meetings 7 h apart, with the expectation that, except for the meeting
chair, participants would attend one of the two meetings. We generally refer to two
meetings on the same day with the singular “meeting” in the discussions to follow.

The inaugural Task Force meeting (February, 2019) was attended by 18 people
representing 14 different resources. Participants introduced themselves and provided
some basic information about their resources, including repository name, starting year,
number of records, and scope (discipline-specific or general purpose), as well as services
provided by each resource (e.g., support of software citation, software deposits, and DOI
minting). Table 1 presents an overview of the collected responses, which highlight the
efforts of the Task Force chairs to bring together both discipline-specific and general
purpose resources. The “Other” category indicates that the answer needed clarifying text
(e.g., for the question “is the repository actively curated?” some repositories are not
manually curated, but have validation checks). Appendix C provides additional
information on the questions asked to resource managers (Table C.1) and their responses
(Tables C.2-C.4).

During the inaugural Task Force meeting, the chair laid out the goal of the Task Force,
and the group was invited to brainstorm to identify commonalities for building a list of
best practices. Participants also shared challenges they had faced in running their resources

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 4/29

https://codemeta.github.io/
https://codemeta.github.io/
http://schema.org
https://hal.inria.fr/hal-01897934v3/codemeta
https://www.astrobetter.com/
https://www.astrobetter.com/
https://carpentries.org/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Overview of the information shared by the 14 resources which participated in the first Task
Force meeting.

Question #Yes #No #Other
Is the resource discipline-specific? 6 8 0
Does the resource accept software only? 8 6 0
Does the resource require a software deposit? 2 12 0
Does the resource accept software deposits? 10 4 0
Can the resource mint DOIs? 6 8 0
Is the resource actively curated? 10 1 3
Can the resource be used to cite software? 11 2 1

and policies they had enacted to manage these resources. The result of the brainstorming
and discussion was a list of ideas collected in a common document.

Starting in May 2019 and continuing through the rest of 2019, the Task Force met on
the third Thursday of each month and followed an iterative process to discuss, add to, and
group ideas; refine and clarify the ideas into different practices, and define the practices
more precisely. It was clear from the onset that, though our resources have goals in
common, they are also very diverse and would be best served by best practices that
were descriptive rather than prescriptive. We reached consensus on whether a practice
should be a best practice through discussion and informal voting. Each best practice was
given a title and a list of questions or needs that it addressed.

Our initial plan aimed at holding two Task Force meetings on the same day each month,
in order to follow a common agenda with independent discussions built upon the previous
month’s meeting. However, the later meeting was often advantaged by the earlier
discussion. For instance, if the early meeting developed a list of examples for one of the
guidelines, the late meeting then refined and added to the list. Hence, discussions were only
duplicated when needed, e.g., where there was no consensus in the early group, and
often proceeded in different directions according to the group’s expertise and interest.
Though we had not anticipated this, we found that holding two meetings each month on
the same day accelerated the work, as work done in the second meeting of the day generally
continued rather than repeating work done in the first meeting.

The resulting consensus from the meetings produced a list of the most broadly
applicable practices, which became the initial list of best practices participants drew from
during a two-day workshop, funded by the Sloan Foundation and held at the University of
Maryland College Park, in November, 2019 (Scientific Software Registry Collaboration
Workshop). A goal of the workshop was to develop the final recommendations on best
practices for repositories and registries to the FORCE11 SCIWG. The workshop included
participants outside the Task Force resulting in a broader set of contributions to the
final list. In 2020, this group made additional refinements to the best practices during
virtual meetings and through online collaborative writing producing in the guidelines
described in the next section. The Task Force then transitioned into the SciCodes
consortium (http://scicodes.net). SciCodes is a permanent community for research

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 5/29

https://asclnet.github.io/SWRegistryWorkshop/
https://asclnet.github.io/SWRegistryWorkshop/
http://scicodes.net
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

! Please note that the information pro-
vided in this article does not constitute
legal advice.

software registries and repositories with a particular focus on these best practices. SciCodes
continued to collect information about involved registries and repositories, which are listed
in Appendix C. We also include some analysis of the number of entries and date of
creation of member resources. Appendix A lists the people who participated in these
efforts.

BEST PRACTICES FOR REPOSITORIES AND REGISTRIES

Our recommendations are provided as nine separate policies or statements, each presented
below with an explanation as to why we recommend the practice, what the practice
describes, and specific considerations to take into account. The last paragraph of each best
practice includes one or two examples and a link to Appendix B, which contains many
examples from different registries and repositories.

These nine best practices, though not an exhaustive list, are applicable to the varied
resources represented in the Task Force, so are likely to be broadly applicable to other
scientific software repositories and registries. We believe that adopting these practices will
help document, guide, and preserve these resources, and put them in a stronger position to
serve their disciplines, users, and communities'.

Provide a public scope statement

The landscape of research software is diverse and complex due to the overlap between
scientific domains, the variety of technical properties and environments, and the additional
considerations resulting from funding, authors’ affiliation, or intellectual property. A scope
statement clarifies the type of software contained in the repository or indexed in the
registry. Precisely defining a scope, therefore, helps those users of the resource who are
looking for software to better understand the results they obtained.

Moreover, given that many of these resources accept submission of software packages,
providing a precise and accessible definition will help researchers determine whether
they should register or deposit software, and curators by making clear what is out of scope
for the resource. Overall, a public scope manages the expectations of the potential
depositor as well as the software seeker. It informs both what the resource does and does
not contain.

The scope statement should describe:

e What is accepted, and acceptable, based on criteria covering scientific discipline,
technical characteristics, and administrative properties

e What is not accepted, i.e., characteristics that preclude their incorporation in the
resource

e Notable exceptions to these rules, if any

Particular criteria of relevance include the scientific community being served and the
types of software listed in the registry or stored in the repository, such as source code,
compiled executables, or software containers. The scope statement may also include
criteria that must be satisfied by accepted software, such as whether certain software
quality metrics must be fulfilled or whether a software project must be used in published

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 6/29

http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

research. Availability criteria can be considered, such as whether the code has to be
publicly available, be in the public domain and/or have a license from a predefined set, or
whether software registered in another registry or repository will be accepted.

An illustrating example of such a scope statement is the editorial policy (https://ascl.net/
wordpress/submissions/editiorial-policy/) published by the Astrophysics Source Code
Library (ASCL) (Allen et al., 2013), which states that it includes only software source
code used in published astronomy and astrophysics research articles, and specifically
excludes software available only as a binary or web service. Though the ASCL’s focus is on
research documented in peer-reviewed journals, its policy also explicitly states that it
accepts source code used in successful theses. Other examples of scope statements can be
found in Appendix B.

Provide guidance for users
Users accessing a resource to search for entries and browse or retrieve the description(s) of
one or more software entries have to understand how to perform such actions. Although
this guideline potentially applies to many public online resources, especially research
databases, the potential complexity of the stored metadata and the curation mechanisms
can seriously impede the understandability and usage of software registries and
repositories.

User guidance material may include:

e How to perform common user tasks, such as searching the resource, or accessing the
details of an entry

e Answers to questions that are often asked or can be anticipated, e.g., with Frequently
Asked Questions or tips and tricks pages

e Who to contact for questions or help

A separate section in these guidelines on the Conditions of use policy covers terms of use
of the resource and how best to cite records in a resource and the resource itself.

Guidance for users who wish to contribute software is covered in the next section,
Provide guidance to software contributors.

When writing guidelines for users, it is advisable to identify the types of users your
resource has or could potentially have and corresponding use cases. Guidance itself
should be offered in multiple forms, such as in-field prompts, linked explanations, and
completed examples. Any machine-readable access, such as an API, should be fully
described directly in the interface or by providing a pointer to existing documentation, and
should specify which formats are supported (e.g., JSON-LD, XML) through content
negotiation if it is enabled.

Examples of such elements include, for instance, the bio.tools registry (Ison et al., 2019)
API user guide (https://biotools.readthedocs.io/en/latest/api_usage_guide.html), or the
ORNL DAAC (ORNL, 2013) instructions for data providers (https://daac.ornl.gov/submit/).
Additional examples of user guidance can be found in Appendix B.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 7/29

https://ascl.net/wordpress/submissions/editiorial-policy/
https://ascl.net/wordpress/submissions/editiorial-policy/
https://biotools.readthedocs.io/en/latest/api_usage_guide.html
https://daac.ornl.gov/submit/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Provide guidance to software contributors
Most software registries and repositories rely on a community model, whereby external
contributors will provide software entries to the resource. The scope statement will already
have explained what is accepted and what is not; the contributor policy addresses who can
add or change software entries and the processes involved.

The contributor policy should therefore describe:

Who can or cannot submit entries and/or metadata

Required and optional metadata expected for deposited software

Review process, if any

e Curation process, if any

Procedures for updates (e.g., who can do it, when it is done, how is it done)

Topics to consider when writing a contributor policy include whether the author(s) of a
software entry will be contacted if the contributor is not also an author and whether
contact is a condition or side-effect of the submission. Additionally, a contributor policy
should specify how persistent identifiers are assigned (if used) and should state that
depositors must comply with all applicable laws and not be intentionally malicious.

Such material is provided in resources such as the Computational Infrastructure for
Geodynamics (Hwang & Kellogg, 2017) software contribution checklist (https://github.
com/geodynamics/best_practices/blob/master/ContributingChecklist. md#contributing-
software) and the CoMSES Net Computational Model Library (Janssen et al., 2008) model
archival tutorial (https://forum.comses.net/t/archiving-your-model-1-gettingstarted/
7377). Additional examples of guidance for software contributors can be found in
Appendix B.

Establish an authorship policy

Because research software is often a research product, it is important to report authorship
accurately, as it allows for proper scholarly credit and other types of attributions

(Smith, Katz & Niemeyer, 2016). However, even though authorship should be defined at
the level of a given project, it can prove complicated to determine (Alliez et al., 2019).
Roles in software development can widely vary as contributors change with time and
versions, and contributions are difficult to gauge beyond the “commit,” giving rise to
complex situations. In this context, establishing a dedicated policy ensures that people are
given due credit for their work. The policy also serves as a document that administrators
can turn to in case disputes arise and allows proactive problem mitigation, rather than
having to resort to reactive interpretation. Furthermore, having an authorship policy
mirrors similar policies by journals and publishers and thus is part of a larger trend. Note
that the authorship policy will be communicated at least partially to users through
guidance provided to software contributors. Resource maintainers should ensure this
policy remains consistent with the citation policies for the registry or repository (usually,
the citation requirements for each piece of research software are under the authority of
its owners).

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 8/29

https://github.com/geodynamics/best_practices/blob/master/ContributingChecklist.md#contributing-software
https://github.com/geodynamics/best_practices/blob/master/ContributingChecklist.md#contributing-software
https://github.com/geodynamics/best_practices/blob/master/ContributingChecklist.md#contributing-software
https://forum.comses.net/t/archiving-your-model-1-gettingstarted/7377
https://forum.comses.net/t/archiving-your-model-1-gettingstarted/7377
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

The authorship policy should specify:

e How authorship is determined e.g., a stated criteria by the contributors and/or the
resource

e Policies around making changes to authorship

e The conflict resolution processes adopted to handle authorship disputes

When defining an authorship policy, resource maintainers should take into
consideration whether those who are not coders, such as software testers or documentation
maintainers, will be identified or credited as authors, as well as criteria for ordering the list
of authors in cases of multiple authors, and how the resource handles large numbers of
authors and group or consortium authorship. Resources may also include guidelines about
how changes to authorship will be handled so each author receives proper credit for their
contribution. Guidelines can help facilitate determining every contributors’ role. In
particular, the use of a credit vocabulary, such as the Contributor Roles Taxonomy (Allen,
O’Connell & Kiermer, 2019), to describe authors’ contributions should be considered for
this purpose (http://credit.niso.org/).

An example of authorship policy is provided in the Ethics Guidelines (https://joss.theoj.
org/about#ethics) and the submission guide authorship section (https://joss.readthedocs.
io/en/latest/submitting html#authorship) of the Journal of Open Source Software (Katz,
Niemeyer & Smith, 2018), which provides rules for inclusion in the authors list. Additional
examples of authorship policies can be found in Appendix B.

Document and share your metadata schema
The structure and semantics of the information stored in registries and repositories is
sometimes complex, which can hinder the clarity, discovery, and reuse of the entries
included in these resources. Publicly posting the metadata schema used for the entries
helps individual and organizational users interested in a resource’s information
understand the structure and properties of the deposited information. The metadata
structure helps to inform users how to interact with or ingest records in the resource. A
metadata schema mapped to other schemas and an API specification can improve the
interoperability between registries and repositories.

This practice should specify:

e The schema used and its version number. If a standard or community schema, such as
CodeMeta (Jones et al., 2017) or schema.org (Guha, Brickley ¢» Macbeth, 2016) is used,
the resource should reference its documentation or official website. If a custom schema
is used, formal documentation such as a description of the schema and/or a data
dictionary should be provided.

e Expected metadata when submitting software, including which fields are required and
which are optional, and the format of the content in each field.

To improve the readability of the metadata schema and facilitate its translation to other
standards, resources may provide a mapping (from the metadata schema used in the

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 9/29

http://credit.niso.org/
https://joss.theoj.org/about#ethics
https://joss.theoj.org/about#ethics
https://joss.readthedocs.io/en/latest/submitting.html#authorship
https://joss.readthedocs.io/en/latest/submitting.html#authorship
http://codemeta.github.io/
http://schema.org
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

resource) to published standard schemas, through the form of a “cross-walk” (e.g., the
CodeMeta cross-walk (https://codemeta.github.io/crosswalk/)) and include an example
entry from the repository that illustrates all the fields of the metadata schema. For instance,
extensive documentation (https://biotoolsschema.readthedocs.io/en/latest/) is available for
the biotoolsSchema (Ison et al., 2021) format, which is used in the bio.tools registry.
Another example is the OntoSoft vocabulary (http://ontosoft.org/software), used by the
OntoSoft registry (Gil, Ratnakar ¢» Garijo, 2015; Gil et al., 2016) and available in both
machine-readable and human readable formats. Additional examples of metadata schemas
can be found in Appendix B.

Stipulate conditions of use
The conditions of use document the terms under which users may use the contents
provided by a website. In the case of software registries and repositories, these conditions
should specifically state how the metadata regarding the entities of a resource can be used,
attributed, and/or cited, and provide information about the licenses used for the code and
binaries. This policy can forestall potential liabilities and difficulties that may arise, such as
claims of damage for misinterpretation or misapplication of metadata. In addition, the
conditions of use should clearly state how the metadata can and cannot be used, including
for commercial purposes and in aggregate form.

This document should include:

o Legal disclaimers about the responsibility and liability borne by the registry or repository

e License and copyright information, both for individual entries and for the registry or
repository as a whole

e Conditions for the use of the metadata, including prohibitions, if any
e Preferred format for citing software entries

o Preferred format for attributing or citing the resource itself

When writing conditions of use, resource maintainers might consider what license
governs the metadata, if licensing requirements apply for findings and/or derivatives of the
resource, and whether there are differences in the terms and license for commercial vs
noncommercial use. Restrictions on the use of the metadata may also be included, as well
as a statement to the effect that the registry or repository makes no guarantees about
completeness and is not liable for any damages that could arise from the use of the
information. Technical restrictions, such as conditions of use of the API (if one is
available), may also be mentioned.

Conditions of use can be found for instance for DOE CODE (Ensor et al., 2017), which
in addition to the general conditions of use (https://www.osti.gov/disclaim) specifies that
the rules for usage of the hosted code (https://www.osti.gov/doecode/fag#are-there-
restrictions) are defined by their respective licenses. Additional examples of conditions of
use policies can be found in Appendix B.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 10/29

https://codemeta.github.io/crosswalk/
https://biotoolsschema.readthedocs.io/en/latest/
http://ontosoft.org/software
https://www.osti.gov/disclaim
https://www.osti.gov/doecode/faq#are-there-restrictions
https://www.osti.gov/doecode/faq#are-there-restrictions
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

2 In the case of GDPR, the regulation
applies to all European user personal
data, even if the resource is not located in
Europe.

State a privacy policy
Privacy policies define how personal data about users are stored, processed, exchanged or
removed. Having a privacy policy demonstrates a strong commitment to the privacy of
users of the registry or repository and allows the resource to comply with the legal
requirement of many countries in addition to those a home institution and/or funding
agencies may impose.

The privacy policy of a resource should describe:

e What information is collected and how long it is retained

How the information, especially any personal data, is used

Whether tracking is done, what is tracked, and how (e.g., Google Analytics)
Whether cookies are used

When writing a privacy policy, the specific personal data which are collected should be
detailed, as well as the justification for their resource, and whether these data are sold
and shared. Additionally, one should list explicitly the third-party tools used to collect
analytic information and potentially reference their privacy policies. If users can receive
emails as a result of visiting or downloading content, such potential solicitations or
notifications should be announced. Measures taken to protect users’ privacy and whether
the resource complies with the European Union Directive on General Data Protection
Regulation (https://gdpr-info.eu/) (GDPR) or other local laws, if applicable, should be
explained”. As a precaution, the statement can reserve the right to make changes to this
privacy policy. Finally, a mechanism by which users can request the removal of such
information should be described.

For example, the SciCrunch’s (Grethe et al., 2014) privacy policy (https://scicrunch.org/
page/privacy) details what kind of personal information is collected, how it is collected,
and how it may be reused, including by third-party websites through the use of cookies.
Additional examples of privacy policies can be found in Appendix B.

Provide a retention policy
Many software registries and repositories aim to facilitate the discovery and accessibility of
the objects they describe, e.g., enabling search and citation, by making the corresponding
records permanently accessible. However, for various reasons, even in such cases
maintainers and curators may have to remove records. Common examples include
removing entries that are outdated, no longer meet the scope of the registry, or are found to
be in violation of policies. The resource should therefore document retention goals and
procedures so that users and depositors are aware of them.

The retention policy should describe:

The length of time metadata and/or files are expected to be retained;

Under what conditions metadata and/or files are removed;

Who has the responsibility and ability to remove information;

Procedures to request that metadata and/or files be removed.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 11/29

https://gdpr-info.eu/
https://scicrunch.org/page/privacy
https://scicrunch.org/page/privacy
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

The policy should take into account whether best practices for persistent identifiers are
followed, including resolvability, retention, and non-reuse of those identifiers. The
retention time provided by the resource should not be too prescriptive (e.g., “for the next
10 years”), but rather it should fit within the context of the underlying organization(s)
and its funding. This policy should also state who is allowed to edit metadata, delete
records, or delete files, and how these changes are performed to preserve the broader
consistency of the registry. Finally, the process by which data may be taken offline and
archived as well as the process for its possible retrieval should be thoroughly documented.

As an example, Bioconductor (Gentleman et al., 2004) has a deprecation process
through which software packages are removed if they cannot be successfully built or tested,
or upon specific request from the package maintainer. Their policy (https://bioconductor.
org/developers/package-end-of-life/) specifies who initiates this process and under
which circumstances, as well as the successive steps that lead to the removal of the package.
Additional examples of retention policies can be found in Appendix B.

Disclose your end-of-life policy
Despite their usefulness, the long-term maintenance, sustainability, and persistence of
online scientific resources remains a challenge, and published web services or databases
can disappear after a few years (Veretnik, Fink ¢ Bourne, 2008; Kern, Fehlmann ¢ Keller,
2020). Sharing a clear end-of-life policy increases trust in the community served by a
registry or repository. It demonstrates a thoughtful commitment to users by informing
them that provisions for the resource have been considered should the resource close or
otherwise end its services for its described artifacts. Such a policy sets expectations and
provides reassurance as to how long the records within the registry will be findable and
accessible in the future.

This policy should describe:

e Under what circumstances the resource might end its services;
e What consequences would result from closure;

e What will happen to the metadata and/or the software artifacts contained in the resource
in the event of closure;

o If long-term preservation is expected, where metadata and/or software artifacts will be
migrated for preservation;

e How a migration will be funded.

Publishing an end-of-life policy is an opportunity to consider, in the event a resource is
closed, whether the records will remain available, and if so, how and for whom, and
under which conditions, such as archived status or “read-only.” The restrictions applicable
to this policy, if any, should be considered and detailed. Establishing a formal agreement or
memorandum of understanding with another registry, repository, or institution to receive
and preserve the data or project, if applicable, might help to prepare for such a liability.

Examples of such policies include the Zenodo end-of-life policy (https://help.zenodo.
org/), which states that if Zenodo ceases its services, the data hosted in the resource will be

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 12/29

https://bioconductor.org/developers/package-end-of-life/
https://bioconductor.org/developers/package-end-of-life/
https://help.zenodo.org/
https://help.zenodo.org/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

® The elements were: software name,
description, keywords, and URL.

migrated and the DOIs provided would be updated to resolve to the new location
(currently unspecified). Additional examples of end-of-life policies can be found in
Appendix B.

A summary of the practices presented in this section can be found in Table 2.

DISCUSSION

The best practices described above serve as a guide for repositories and registries to provide
better service to their users, ranging from software developers and researchers to
publishers and search engines, and enable greater transparency about the operation of
their described resources. Implementing our practices provides users with significant
information about how different resources operate, while preserving important
institutional knowledge, standardizing expectations, and guiding user interactions.

For instance, a public scope statement and guidance for users may directly impact
usability and, thus, the popularity of the repository. Resources including tools with a
simple design and unambiguous commands, as well as infographic guides or video
tutorials, ease the learning curve for new users. The guidance for software contributions,
conditions of use, and sharing the metadata schema used may help eager users contribute
new functionality or tools, which may also help in creating a community around a
resource. A privacy policy has become a requirement across geographic boundaries and
legal jurisdictions. An authorship policy is critical in facilitating collaborative work among
researchers and minimizing the chances for disputes. Finally, retention and end-of-life
policies increase the trust and integrity of a repository service.

Policies affecting a single community or domain were deliberately omitted when
developing the best practices. First, an exhaustive list would have been a barrier to
adoption and not applicable to every repository since each has a different perspective,
audience, and motivation that drives policy development for their organization. Second,
best practices that regulate the content of a resource are typically domain-specific to the
artifact and left to resources to stipulate based on their needs. Participants in the 2019
Scientific Software Registry Collaboration Workshop were surprised to find that only four
metadata elements were shared by all represented resources’. The diversity of our
resources precludes prescriptive requirements, such as requiring specific metadata for
records, so these were also deliberately omitted in the proposed best practices.

Hence, we focused on broadly applicable practices considered important by various
resources. For example, amongst the participating registries and repositories, very few had
codes of conduct that govern the behavior of community members. Codes of conduct
are warranted if resources are run as part of a community, especially if comments and
reviews are solicited for deposits. In contrast, a code of conduct would be less useful for
resources whose primary purpose is to make software and software metadata available for
reuse. However, this does not negate their importance and their inclusion as best practices
in other arenas concerning software.

As noted by the FAIR4RS movement, software is different than data, motivating the
need for a separate effort to address software resources (Lamprecht et al., 2020; Katz et al.,
2016). Even so, there are some similarities, and our effort complements and aligns well

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 13/29

http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Summary of the best practices with recommendations and examples.

Practice, description and examples

Recommendations

1. Provide a public scope statement

Informs both software depositor and resource seeker what the
collection does and does not contain.

Example: ASCL editorial policy.

2. Provide guidance for users

Helps users accessing a resource understand how to perform tasks
like searching, browsing, and retrieving software entries.

Example: bio.tools registry APT user guide.
3. Provide guidance to software contributors

Specifies who can add or change software entries and explains the
necessary processes.

Example: Computational Infrastructure for Geodynamics
contribution checklist.

4. Establish an authorship policy

Ensures that contributors are given due credit for their work and to
resolve disputes in case of conflict.

Example: JOSS authorship policy.

5. Document and share your metadata schema

Revealing the metadata schema used helps users understand the
structure and properties of the deposited information.

Example: OntoSoft vocabulary from the OntoSoft registry.
6. Stipulate conditions of use

Documents the terms under which users may use the provided
resources, including metadata and software.

Example: DOE CODE acceptable use policy.

7. State a privacy policy

Defines how personal data about users are stored, processed,
exchanged, or removed.

Example: SciCrunch’s privacy policy.
8. Provide a retention policy

Helps both users and depositors understand and anticipate retention
goals and procedures.

Example: Bioconductor package deprecation.

9. Disclose end-of-life policy

Informs both users and depositors of how long the records within
the resource will be findable and accessible in the future.

Example: Zenodo end-of-life policy.

» What is accepted, and acceptable, based on criteria covering scientific discipline,
technical characteristics, and administrative properties

« What is not accepted, i.e., characteristics that preclude their incorporation in the
resource

« Notable exceptions to these rules, if any

« How to perform common user tasks, like searching for collection, or accessing the
details of an entry

« Answers to questions that are often asked or can be anticipated

« Point of contact for help and questions
¢ Who can or cannot submit entries and/or metadata

« Required and optional metadata expected from software contributors
« Procedures for updates, review process, curation process

« How authorship is determined e.g., a stated criteria by the contributors and/or the
resource

« Policies around making changes to authorship

« Define the conflict resolution processes

o Specify the used schema and its version number. Add reference to its documentation
or official website. If a custom schema is used, provide documentation.

« Expected metadata when submitting software

« Legal disclaimers about the responsibility and liability borne by the resource

« License and copyright information, both for individual entries and for the resource as
a whole

« Conditions for the use of the metadata, including prohibitions, if any

o Preferred format for citing software entries; preferred format for attributing or citing
the resource itself

« What information is collected and how long it is retained

« How the information, especially any personal data, is used

« Whether tracking is done, what is tracked, and how; whether cookies are used
« The length of time metadata and/or files are expected to be retained

« Under what conditions metadata and/or files are removed

» Who has the responsibility and ability to remove information; procedures to request
that metadata and/or files be removed

« Circumstances under which the resource might end its services

» What consequences would result from closure

» What will happen to the metadata and/or the software artifacts contained in the
resource in the event of closure

« If long-term preservation is expected, where metadata and/or software artifacts will be
migrated for preservation; how a migration will be funded

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 14/29

https://ascl.net/wordpress/submissions/editiorial-policy/
https://biotools.readthedocs.io/en/latest/api_usage_guide.html
https://geodynamics.org/cig/dev/code-donation/checklist/
https://geodynamics.org/cig/dev/code-donation/checklist/
https://joss.readthedocs.io/en/latest/submitting.html#authorship
http://ontosoft.org/software
https://www.osti.gov/disclaim#disclaimer-270406
https://scicrunch.org/page/privacy
https://bioconductor.org/developers/package-end-of-life/
https://help.zenodo.org/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Number of supporting resources

Public User Software Authorship Metadata Conditions Privacy Retention End-of-life
scope guidance contributor policy schema of use policy policy policy
statement guidance

Best Practice

Figure 1 Number of resources supporting each best practice, out of 14 resources.
Full-size K&] DOT: 10.7717/peerj-cs.1023/fig-1

with recent guidelines developed in parallel to increase the transparency, responsibility,
user focus, sustainability, and technology of data repositories. For example, both the
TRUST Principles (Lin et al., 2020) and CoreTrustSeal Requirements (CoreTrustSeal,
2019) call for a repository to provide information on its scope and list the terms of use of its
metadata to be considered compliant with TRUST or CoreTrustSeal, which aligns with our
practices “Provide a public scope statement” and “Stipulate conditions of use”.
CoreTrustSeal and TRUST also require that a repository consider continuity of access,
which we have expressed as the practice to “Disclosing your end-of-life policy”. Our best
practices differ in that they do not address, for example, staffing needs nor professional
development for staff, as CoreTrustSeal requires, nor do our practices address protections
against cyber or physical security threats, as the TRUST principles suggest. Inward-facing
policies, such as documenting internal workflows and practices, are generally good in
reducing operational risks, but internal management practices were considered out of
scope of our guidelines.

Figure 1 shows the number of resources that support (partially or in their totality)
each best practice. Though we see the proposed best practices as critical, many of the
repositories that have actively participated in the discussions (14 resources in total) have
yet to implement every one of them. We have observed that the first three practices
(providing public scope statement, add guidance for users and for software contributors)
have the widest adoption, while the retention, end-of-life, and authorship policy the least.
Understanding the lag in the implementation across all of the best practices requires
further engagement with the community.

Improving the adoption of our guidelines is one of the goals of SciCodes (http://
scicodes.net), a recent consortium of scientific software registries and repositories.
SciCodes evolved from the Task Force as a permanent community to continue the dialogue
and share information between domains, including sharing of tools and ideas. SciCodes

Garijo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1023 M 0 [15/29

http://scicodes.net
http://scicodes.net
http://dx.doi.org/10.7717/peerj-cs.1023/fig-1
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

has also prioritized improving software citation (complementary to the efforts of the
FORCE11 SCIWG) and tracking the impact of metadata and interoperability. In addition,
SciCodes aims to understand barriers to implementing policies, ensure consistency
between various best practices, and continue advocacy for software support by continuing
dialogue between registries, repositories, researchers, and other stakeholders.

CONCLUSIONS

The dissemination and preservation of research material, where repositories and registries
play a key role, lies at the heart of scientific advancement. This article introduces nine best
practices for research software registries and repositories. The practices are an outcome of
a Task Force of the FORCE11 Software Citation Implementation Working Group and
reflect the discussion, collaborative experiences, and consensus of over 30 experts and 14
resources.

The best practices are non-prescriptive, broadly applicable, and include examples and
guidelines for their adoption by a community. They specify establishing the working
domain (scope) and guidance for both users and software contributors, address legal
concerns with privacy, use, and authorship policies, enhance usability by encouraging
metadata sharing, and set expectations with retention and end-of-life policies. However,
we believe additional work is needed to raise awareness and adoption across resources
from different scientific disciplines. Through the SciCodes consortium, our goal is to
continue implementing these practices more uniformly in our own registries and
repositories and reduce the burdens of adoption. In addition to completing the adoption of
these best practices, SciCodes will address topics such as tracking the impact of good
metadata, improving interoperability between registries, and making our metadata
discoverable by search engines and services such as Google Scholar, ORCID, and discipline
indexers.

APPENDIX A: CONTRIBUTORS

The following people contributed to the development of this article through participation
in the Best Practices Task Force meetings, 2019 Scientific Software Registry Collaboration
Workshop, and/or SciCodes Consortium meetings:

Alain Monteil, Inria, HAL; Software Heritage

Alejandra Gonzalez-Beltran, Science and Technology Facilities Council, UK Research
and Innovation, Science and Technology Facilities Council

Alexandros Ioannidis, CERN, Zenodo

Alice Allen, University of Maryland, College Park, Astrophysics Source Code Library

Allen Lee, Arizona State University, CoMSES Net Computational Model Library

Ana Trisovic, Harvard University, DataVerse

Anita Bandrowski, UCSD, SciCrunch

Bruce E. Wilson, Oak Ridge National Laboratory, ORNL Distributed Active Archive
Center for Biogeochemical Dynamics

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 16/29

https://orcid.org/0000-0003-3150-4837
https://hal.archives-ouvertes.fr/
https://www.softwareheritage.org/
https://orcid.org/0000-0003-3499-8262
https://www.ukri.org/councils/stfc/
https://orcid.org/0000-0002-5082-6404
https://zenodo.org/
https://orcid.org/0000-0003-3477-2845
http://ascl.net/
https://orcid.org/0000-0002-6523-6079
https://www.comses.net/
https://orcid.org/0000-0003-1991-0533
https://dataverse.org/
https://orcid.org/0000-0002-5497-0243
https://scicrunch.org/
https://orcid.org/0000-0002-1421-1728
https://daac.ornl.gov/
https://daac.ornl.gov/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Bryce Mecum, NCEAS, UC Santa Barbara, CodeMeta

Caifan Du, iSchool, University of Texas at Austin, CiteAs

Carly Robinson, US Department of Energy, Office of Scientific and Technical
Information, DOE CODE

Daniel Garijo, Universidad Politécnica de Madrid (formerly at Information Sciences
Institute, University of Southern California), Ontosoft

Daniel S. Katz, University of Illinois at Urbana-Champaign, Associate EiC for JOSS,
FORCE11 Software Citation Implementation Working Group, co-chair

David Long, Brigham Young University, IEEE GRS Remote Sensing Code Library

Genevieve Milliken, NYU Bobst Library, IASGE

Hervé Ménager, Hub de Bioinformatique et Biostatistique—Département Biologie
Computationnelle, Institut Pasteur, ELIXIR bio.tools

Jessica Hausman, Jet Propulsion Laboratory, PO.DAAC

Jurriaan H. Spaaks, Netherlands eScience Center, Research Software Directory

Katrina Fenlon, University of Maryland, iSchool

Kristin Vanderbilt, Environmental Data Initiative, IMCR

Lorraine Hwang, University California Davis, Computational Infrastructure for
Geodynamics

Lynn Davis, US Department of Energy, Office of Scientific and Technical Information,
DOE CODE

Martin Fenner, Front Matter (formerly at DataCite), FORCE11 Software Citation
Implementation Working Group, co-chair

Michael R. Crusoe, CWL, Debian-Med

Michael Hucka, California Institute of Technology, SBML; COMBINE

Mingfang Wu, Australian Research Data Commons, Australian Research Data
Commons

Morane Gruenpeter, Inria, Software Heritage

Moritz Schubotz, FIZ Karlsruhe - Leibniz-Institute for Information Infrastructure,
swMATH

Neil Chue Hong, Software Sustainability Institute/University of Edinburgh, Software
Sustainability Institute; FORCE11 Software Citation Implementation Working Group, co-
chair

Pete Meyer, Harvard Medical School, SBGrid; BioGrids

Peter Teuben, University of Maryland, College Park, Astrophysics Source Code Library

Piotr Sliz, Harvard Medical School, SBGrid; BioGrids

Sara Studwell, US Department of Energy, Office of Scientific and Technical
Information, DOE CODE

Shelley Stall, American Geophysical Union, AGU Data Services

Stephan Druskat, German Aerospace Center (DLR)/University Jena/Humboldt-
Universitat zu Berlin, Citation File Format

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 17/29

https://orcid.org/0000-0002-0381-3766
https://codemeta.github.io/
https://orcid.org/0000-0003-2538-607X
http://citeas.org/
https://orcid.org/0000-0002-8523-1478
https://www.osti.gov/doecode/
https://orcid.org/0000-0003-0454-7145
http://www.ontosoft.org/
https://orcid.org/0000-0001-5934-7525
https://www.force11.org/group/software-citation-implementation-working-group
https://orcid.org/0000-0002-1852-3972
https://rscl-grss.org/
https://orcid.org/0000-0002-3057-0659
https://investigating-archiving-git.gitlab.io/
https://orcid.org/0000-0002-7552-1009
https://bio.tools/
https://orcid.org/0000-0002-1861-1526
https://podaac.jpl.nasa.gov/
https://orcid.org/0000-0002-7064-4069
https://www.research-software.nl/
https://orcid.org/0000-0003-1483-5335
https://ischool.umd.edu/
https://orcid.org/0000-0003-1439-2204
https://imcr-hackathon.github.io/website/
https://orcid.org/0000-0002-1021-3101
https://geodynamics.org/
https://geodynamics.org/
https://orcid.org/0000-0002-4670-0964
https://www.osti.gov/doecode/
https://orcid.org/0000-0003-1419-2405
https://www.force11.org/group/software-citation-implementation-working-group
https://www.force11.org/group/software-citation-implementation-working-group
https://orcid.org/0000-0002-2961-9670
https://www.debian.org/devel/debian-med/
https://orcid.org/0000-0001-9105-5960
http://sbml.org
http://co.mbine.org
https://orcid.org/0000-0003-1206-3431
https://ardc.edu.au/
https://ardc.edu.au/
https://orcid.org/0000-0002-9777-5560
https://www.softwareheritage.org/
https://orcid.org/0000-0001-7141-4997
https://swmath.org
https://orcid.org/0000-0002-8876-7606
https://www.software.ac.uk/
https://www.software.ac.uk/
https://www.force11.org/group/software-citation-implementation-working-group
https://orcid.org/0000-0002-5793-4424
https://sbgrid.org/
https://biogrids.org/
https://orcid.org/0000-0003-1774-3436
http://ascl.net/
https://orcid.org/0000-0002-6522-0835
https://sbgrid.org/
https://biogrids.org/
https://orcid.org/0000-0003-1147-2743
https://www.osti.gov/doecode/
https://orcid.org/0000-0003-2926-8353
https://www.agu.org/Learn-About-AGU/About-AGU/Data-Leadership
https://orcid.org/0000-0003-4925-7248
https://citation-file-format.github.io/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Ted Carnevale, Neuroscience Department, Yale University, ModelDB
Tom Morrell, Caltech Library, CaltechDATA
Tom Pollard, MIT/PhysioNet, PhysioNet

APPENDIX B: POLICY EXAMPLES
Scope statement

o Astrophysics Source Code Library. (n.d.). Editorial policy.
https://ascl.net/wordpress/submissions/editiorial-policy/

« bio.tools. (n.d.). Curators Guide.
https://biotools.readthedocs.io/en/latest/curators_guide.html

o Caltech Library. (2017). Terms of Deposit.

https://data.caltech.edu/terms

o Caltech Library. (2019). CaltechDATA FAQ.
https://www.library.caltech.edu/caltechdata/faq

» Computational Infrastructure for Geodynamics. (n.d.). Code Donation.
https://geodynamics.org/cig/dev/code-donation/

o CoMSES Net Computational Model Library. (n.d.). Frequently Asked Questions.
https://www.comses.net/about/faq/#model-library

« ORNL DAAC for Biogeochemical Dynamics. (n.d.). Data Scope and Acceptance Policy.
https://daac.ornl.gov/submit/

« RDA Registry and Research Data Australia. (2018). Collection. ARDC Intranet.
https://intranet.ands.org.au/display/DOC/Collection

» Remote Sensing Code Library. (n.d.). Submit.

https://rscl-grss.org/submit.php

o SciCrunch. (n.d.). Curation Guide for SciCrunch Registry.
https://scicrunch.org/page/Curation%20Guidelines

o U.S. Department of Energy: Office of Scientific and Technical Information. (n.d.-a). DOE
CODE: Software Policy. https://www.osti.gov/doecode/policy

« U.S. Department of Energy: Office of Scientific and Technical Information. (n.d.-b).
FAQs. OSTL.GOV.

https://www.osti.gov/fags

Guidance for users

o Astrophysics Source Code Library. (2021). Q ¢ A
https://ascl.net/home/getwp/898

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 18/29

https://senselab.med.yale.edu/modeldb/
https://orcid.org/0000-0001-9266-5146
https://data.caltech.edu/
https://orcid.org/0000-0002-5676-7898
https://physionet.org/
https://ascl.net/wordpress/submissions/editiorial-policy/
https://biotools.readthedocs.io/en/latest/curators_guide.html
https://data.caltech.edu/terms
https://www.library.caltech.edu/caltechdata/faq
https://geodynamics.org/cig/dev/code-donation/
https://www.comses.net/about/faq/#model-library
https://daac.ornl.gov/submit/
https://intranet.ands.org.au/display/DOC/Collection
https://rscl-grss.org/submit.php
https://scicrunch.org/page/Curation%20Guidelines
https://www.osti.gov/doecode/policy
https://www.osti.gov/faqs
https://ascl.net/home/getwp/898
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

« bio.tools. (2021). API Reference
https://biotools.readthedocs.io/en/latest/api_reference.html

o Caltech Library. (2019). CaltechDATA FAQ.
https://www.library.caltech.edu/caltechdata/faq

 Harvard Dataverse. (n.d.). Curation and Data Management Services
https://support.dataverse.harvard.edu/curation-services

» OntoSoft. (n.d.). An Intelligent Assistant for Software Publication
https://ontosoft.org/users.html

« ORNL DAAC for Biogeochemical Dynamics. (n.d.). Learning
https://daac.ornl.gov/resources/learning/

o U.S. Department of Energy: Office of Scientific and Technical Information. (n.d.). FAQs.
OSTL.GOV.

https://www.osti.gov/doecode/faq

Guidance for software contributors

o Astrophysics Source Code Library. (n.d.) Submit a code.
https://ascl.net/code/submit

« bio.tools. (n.d.) Quick Start Guide
https://biotools.readthedocs.io/en/latest/quickstart_guide.html

« Computational Infrastructure for Geodynamics. Contributing Software
https://geodynamics.org/cig/dev/code-donation/checklist/

o CoMSES Net Computational Model Library (2019) Archiving your model: 1. Getting
Started

https://forum.comses.net/t/archiving-your-model-1-getting-started/7377
« Harvard Dataverse. (n.d.) For Journals.

https://support.dataverse.harvard.edu/journals

Authorship

« Committee on Publication Ethics: COPE. (2020a). Authorship and contributorship.
https://publicationethics.org/authorship

» Committee on Publication Ethics: COPE. (2020b). Core practices.
https://publicationethics.org/core-practices

« Dagstuhl EAS Specification Draft. (2016). The Software Credit Ontology.
https://dagstuhleas.github.io/SoftwareCreditRoles/doc/index-en. html#

« Journal of Open Source Software. (n.d.). Ethics Guidelines.

https://joss.theoj.org/about#ethics

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 19/29

https://biotools.readthedocs.io/en/latest/api_reference.html
https://www.library.caltech.edu/caltechdata/faq
https://support.dataverse.harvard.edu/curation-services
https://ontosoft.org/users.html
https://daac.ornl.gov/resources/learning/
https://www.osti.gov/doecode/faq
https://ascl.net/code/submit
https://biotools.readthedocs.io/en/latest/quickstart_guide.html
https://geodynamics.org/cig/dev/code-donation/checklist/
https://forum.comses.net/t/archiving-your-model-1-getting-started/7377
https://support.dataverse.harvard.edu/journals
https://publicationethics.org/authorship
https://publicationethics.org/core-practices
https://dagstuhleas.github.io/SoftwareCreditRoles/doc/index-en.html#
https://joss.theoj.org/about#ethics
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

« ORNL DAAC (n.d) Authorship Policy.

https://daac.ornl.gov/submit/

« Peer] Journals. (n.d.-a). Author Policies.
https://peerj.com/about/policies-and-procedures/#author-policies

« Peer] Journals. (n.d.-b). Publication Ethics.
https://peerj.com/about/policies-and-procedures/#publication-ethics

o PLOS ONE. (n.d.). Authorship.
https://journals.plos.org/plosone/s/authorship

« National Center for Data to Health. (2019). The Contributor Role Ontology.
https://github.com/data2health/contributor-role-ontology

Metadata schema

« ANDS: Australian National Data Service. (n.d.). Metadata. ANDS.
https://www.ands.org.au/working-with-data/metadata

o ANDS: Australian National Data Service. (2016). ANDS Guide: Metadata.
https://www.ands.org.au/data/assets/pdf_file/0004/728041/Metadata-Workinglevel.pdf
o Bernal, I. (2019). Metadata for Data Repositories.
https://doi.org/10.5281/zenodo.3233486

« bio.tools. (2020). Bio-tools/biotoolsSchema [HTML].
https://github.com/bio-tools/biotoolsSchema (Original work published 2015)
« bio.tools. (2019). BiotoolsSchema documentation.
https://biotoolsschema.readthedocs.io/en/latest/

« The CodeMeta crosswalks. (n.d.)

https://codemeta.github.io/crosswalk/

« Citation File Format (CFF). (n.d.)

https://doi.org/10.5281/zenodo.1003149

o The DataVerse Project. (2020). DataVerse 4.0+ Metadata Crosswalk.

https://docs.google.com/spreadsheets/d/10Luzti7svVTVKTA-px270q3RxCUM-
QbiTkm8iMd5C54

« OntoSoft. (2015). OntoSoft Ontology.
https://ontosoft.org/ontology/software/

« Zenodo. (n.d.-a). Schema for Depositing.
https://zenodo.org/schemas/records/record-v1.0.0.json
o Zenodo. (n.d.-b). Schema for Published Record.

https://zenodo.org/schemas/deposits/records/legacyrecord.json

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 20/29

https://daac.ornl.gov/submit/
https://peerj.com/about/policies-and-procedures/#author-policies
https://peerj.com/about/policies-and-procedures/#publication-ethics
https://journals.plos.org/plosone/s/authorship
https://github.com/data2health/contributor-role-ontology
https://www.ands.org.au/working-with-data/metadata
https://www.ands.org.au/data/assets/pdf_file/0004/728041/Metadata-Workinglevel.pdf
https://doi.org/10.5281/zenodo.3233486
https://github.com/bio-tools/biotoolsSchema
https://biotoolsschema.readthedocs.io/en/latest/
https://codemeta.github.io/crosswalk/
https://doi.org/10.5281/zenodo.1003149
https://docs.google.com/spreadsheets/d/10Luzti7svVTVKTA-px27oq3RxCUM-QbiTkm8iMd5C54
https://docs.google.com/spreadsheets/d/10Luzti7svVTVKTA-px27oq3RxCUM-QbiTkm8iMd5C54
https://ontosoft.org/ontology/software/
https://zenodo.org/schemas/records/record-v1.0.0.json
https://zenodo.org/schemas/deposits/records/legacyrecord.json
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Conditions of use policy

o Allen Institute. (n.d.). Terms of Use.
https://alleninstitute.org/legal/terms-use/

o Europeana. (n.d.). Usage Guidelines for Metadata. Europeana Collections.

https://www.europeana.eu/portal/en/rights/metadata.html

o U.S. Department of Energy: Office of Scientific and Technical Information. (n.d.). DOE

CODE FAQ: Are there restrictions on the use of the material in DOE CODE?

https://www.osti.gov/doecode/fag#are-there-restrictions

o Zenodo. (n.d.). Terms of Use.
https://about.zenodo.org/terms/

Privacy policy

o Allen Institute. (n.d.). Privacy Policy.
https://alleninstitute.org/legal/privacy-policy/
o CoMSES Net. (n.d.). Data Privacy Policy.
https://www.comses.net/about/data-privacy/
o Nature. (2020). Privacy Policy.

https://www.nature.com/info/privacy

« Research Data Australia. (n.d.). Privacy Policy.

https://researchdata.ands.org.au/page/privacy

« SciCrunch. (2018). Privacy Policy. SciCrunch.
https://scicrunch.org/page/privacy

« Science Repository. (n.d.). Privacy Policies.
https://www.sciencerepository.org/privacy

o Zenodo. (n.d.). Privacy policy.
https://about.zenodo.org/privacy-policy/

Retention policy

« Bioconductor. (2020). Package End of Life Policy.
https://bioconductor.org/developers/package-end-of-life/

o Caltech Library. (n.d.). CaltechDATA FAQ.
https://www.library.caltech.edu/caltechdata/faq

o CoMSES Net Computational Model Library. (n.d.). How long will models be stored in the

Computational Model Library?

https://www.comses.net/about/faq/

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023

21/29

https://alleninstitute.org/legal/terms-use/
https://www.europeana.eu/portal/en/rights/metadata.html
https://www.osti.gov/doecode/faq#are-there-restrictions
https://about.zenodo.org/terms/
https://alleninstitute.org/legal/privacy-policy/
https://www.comses.net/about/data-privacy/
https://www.nature.com/info/privacy
https://researchdata.ands.org.au/page/privacy
https://scicrunch.org/page/privacy
https://www.sciencerepository.org/privacy
https://about.zenodo.org/privacy-policy/
https://bioconductor.org/developers/package-end-of-life/
https://www.library.caltech.edu/caltechdata/faq
https://www.comses.net/about/faq/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

o Dryad. (2020). Dryad FAQ - Publish and Preserve your Data.
https://datadryad.org/stash/faq#preserved

« Software Heritage. (n.d.). Content policy.
https://www.softwareheritage.org/legal/content-policy/

» Zenodo. (n.d.). General Policies v1.0.

https://about.zenodo.org/policies/

End-of-life policy

« Figshare. (n.d.). Preservation and Continuity of Access Policy.
https://knowledge.figshare.com/articles/item/preservation-and-continuity-of-access-
policy

« Open Science Framework. (2019). FAQs. OSF Guides.
http://help.ost.io/hc/en-us/articles/360019737894-FAQs

o NASA Earth Science Data Preservation Content Specification (n.d.)
https://earthdata.nasa.gov/esdis/eso/standards-and-references/preservation-content-spec
o Zenodo. (n.d.). Frequently Asked Questions.

https://help.zenodo.org/

APPENDIX C: RESOURCE INFORMATION

Since the first Task Force meeting was held in 2019, we have asked new resource
representatives joining our community to provide the information shown in Table C.1.
Thanks to this effort, the group has been able to learn about each resource, identify
similarities and differences, and thus better inform our meeting discussions.

Tables C.2-C.4 provide an updated overview of the main features of all resources
currently involved in the discussion and implementation of the best practices (30 resources
in total as of December, 2021). Participating resources are diverse, and belong to a variety
of discipline-specific (e.g., neurosciences, biology, geosciences, etc.) and domain generic
repositories. Curated resources tend to have a lower number of software entries. Most
resources have been created in the last 20 years, with the oldest resource dating from 1991.
Most resources accept a software deposit, support DOIs to identify their entries, are
actively curated, and can be used to cite software.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 22/29

https://datadryad.org/stash/faq#preserved
https://www.softwareheritage.org/legal/content-policy/
https://about.zenodo.org/policies/
https://knowledge.figshare.com/articles/item/preservation-and-continuity-of-access-policy
https://knowledge.figshare.com/articles/item/preservation-and-continuity-of-access-policy
http://help.osf.io/hc/en-us/articles/360019737894-FAQs
https://earthdata.nasa.gov/esdis/eso/standards-and-references/preservation-content-spec
https://help.zenodo.org/
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Table C.1 Questions asked to resource representatives.

Question Answer type
Repository name and abbreviation Text
Repository home page URL
Representative name and email address Text

Is the repository discipline-specific? Yes/No

Is the repository for discipline software only? Yes/No

Is a software deposit accepted? Yes/No

Is a software deposit required? Yes/No

Does your resource have a public scope/editorial policy? URL
Supported unique identifier(s) type(s) Text

Can the repository mint DOIs? Yes/No

Is the repository actively curated? Yes/No/Other
How are entries added? Text

Is your resource currently used to cite software? Yes/No/Other
When did your resource start operating? Year started
What is the number of records (as of filling date)? Integer
Notes/comments/additional information Text

Table C.2 Information shared by 30 resources participating in the SciCodes consortium, as of

December 2021.

Question #Yes #No #Other
Is the resource discipline-specific? 18 12 0
Does the resource accept software only? 17 13 0
Does the resource require a software deposit? 5 25 0
Does the resource accept a software deposit 22 8 0
Can the resource mint DOIs? 16 14 0
Is the resource actively curated? 21 3 6
Can the resource be used to cite software? 21 6 3

Table C.3 Number of entries described in the resources of the SciCodes consortium, by December

2021.
#Entries #Resources
Unknown 2
Less than 1K 15
1K-100K 10
More than 100K 3
Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 23/29

http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Table C.4 Date of creation of the resources in the SciCodes consortium, by December 2021.

Creation year #Resources

Before 2000 6

2000-2010 9

After 2010 15
ACKNOWLEDGEMENTS

The best practices presented here were proposed and developed by a Task Force of the
FORCEI1 Software Citation Implementation Working Group. The following authors,
randomly ordered, contributed equally to discussion, conceptualization, writing,
reviewing, and editing this article: Daniel Garijo, Lorraine Hwang, Hervé Ménager, Alice
Allen, Michael Hucka, Thomas Morrell, and Ana Trisovic.

Task Force on Best Practices for Software Registries participants: Alain Monteil,
Alejandra Gonzalez-Beltran, Alexandros Ioannidis, Alice Allen, Allen Lee, Andre Jackson,
Bryce Mecum,Caifan Du, Carly Robinson, Daniel Garijo, Daniel Katz, Genevieve Milliken,
Hervé Ménager, Jurriaan Spaaks, Katrina Fenlon, Kristin Vanderbilt, Lorraine Hwang,
Michael Hucka, Neil Chue Hong, P. Wesley Ryan, Peter Teuben, Shelley Stall, Stephan
Druskat, Ted Carnevale, Thomas Morrell.

SciCodes Consortium participants: Alain Monteil, Alejandra Gonzalez-Beltran,
Alexandros Ioannidis, Alice Allen, Allen Lee, Ana Trisovic, Anita Bandrowski, Bruce
Wilson, Bryce Mecum, Carly Robinson, Celine Sarr, Colin Smith, Daniel Garijo, David
Long, Harry Bhadeshia, Hervé Mé nager, Jeanette M. Sperhac, Joy Ku, Jurriaan Spaaks,
Kristin Vanderbilt, Lorraine Hwang, Matt Jones, Mercé Crosas, Michael R. Crusoe, Mike
Hucka, Ming Fang Wu, Morane Gruenpeter, Moritz Schubotz, Olaf Teschke, Pete Meyer,
Peter Teuben, Piotr Sliz, Sara Studwell, Shelley Stall, Ted Carnevale, Tom Morrell, Tom
Pollard, Wolfram Sperber.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Alfred P. Sloan Foundation (Grant Number G-2019-
12446), and the Heidelberg Institute of Theoretical Studies. Ana Trisovic is funded by the
Alfred P. Sloan Foundation (Grant Number P-2020-13988). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Alfred P. Sloan Foundation: G-2019-12446 and P-2020-13988.
Heidelberg Institute of Theoretical Studies.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 24/29

http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Daniel Garijo conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Hervé Ménager conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Lorraine Hwang conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

e Ana Trisovic conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Michael Hucka conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Thomas Morrell conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

o Alice Allen conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
There is no data or code associated with this publication.

REFERENCES

Allen A, DuPrie K, Berriman B, Hanisch RJ, Mink J, Teuben P]J. 2013. Astrophysics source code
library. Astronomical Data Analysis Software and Systems XXII 475:387.

Allen L, O’Connell A, Kiermer V. 2019. How can we ensure visibility and diversity in research
contributions? How the contributor role taxonomy (credit) is helping the shift from authorship
to contributorship. Learned Publishing 32(1):71-74 DOI 10.1002/leap.1210.

Allen A, Schmidt J. 2015. Looking before leaping: creating a software registry. Journal of Open
Research Software 3(1):e15 DOI 10.5334/jors.bv.

Alliez P, Di Cosmo R, Guedj B, Girault A, Hacid M-S, Legrand A, Rougier NP. 2019. Attributing
and referencing (research) software: best practices and outlook from inria. Computing in Science
and Engineering 22(1):1-14 DOI 10.1109/MCSE.2019.2949413.

Australian Research Council. 2018. ARC open access policy. Available at https://www.arc.gov.au/
policies-strategies/policy/arc-open-access-policy.

Baker M. 2016. 1,500 scientists lift the lid on reproducibility. Nature News 533(7604):452-454
DOI 10.1038/533452a.

Barnes N. 2010. Publish your computer code: it is good enough. Nature 467(7317):753
DOI 10.1038/467753a.

Baruch P. 2007. Open access developments in France: the HAL open archives system. Learned
Publishing 20(4):267-282 DOI 10.1087/095315107X239636.

Berman F, Crosas M. 2020. The research data alliance: benefits and challenges of building a
community organization. Harvard Data Science Review 2(1) DOI 10.1162/99608{92.5¢126552.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 25/29

http://dx.doi.org/10.1002/leap.1210
http://dx.doi.org/10.5334/jors.bv
http://dx.doi.org/10.1109/MCSE.2019.2949413
https://www.arc.gov.au/policies-strategies/policy/arc-open-access-policy
https://www.arc.gov.au/policies-strategies/policy/arc-open-access-policy
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1038/467753a
http://dx.doi.org/10.1087/095315107X239636
http://dx.doi.org/10.1162/99608f92.5e126552
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Bourne PE, Clark TW, Dale R, de Waard A, Herman I, Hovy EH, Shotton D. 2012. Improving
the future of research communications and e-scholarship (Dagstuhl Perspectives Workshop
11331). Dagstuhl Manifestos 1(1):41-60 DOI 10.4230/DagMan.1.1.41.

Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, Kulasekaran S,
Ludéscher B, Mecum BD, Nabrzyski J, Stodden V, Taylor IJ, Turk MJ, Turner K. 2019.
Computing environments for reproducibility: capturing the “Whole Tale”. Future Generation
Computer Systems 94:854-867 DOI 10.1016/j.future.2017.12.029.

CERN and OpenAIRE. 2013. Zenodo. Available at https://doi.org/10.25495/7gxk-rd71.

Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB, Hirvonsalo H,
Kousidis D, Lavasa A, Mele S, Rodriguez DR, Simko T, Smith T, Trisovic A, Trzcinska A,
Tsanaktsidis I, Zimmermann M, Cranmer K, Heinrich L, Watts G, Hildreth M, Lloret
Iglesias L, Lassila-Perini K, Neubert S. 2019. Open is not enough. Nature Physics 15(2):113-
119 DOI 10.1038/s41567-018-0342-2.

Chue Hong NP, Katz DS, Barker M, Lamprecht A-L, Martinez C, Psomopoulos FE, Harrow J,
Castro LJ, Gruenpeter M, Martinez PA, Honeyman T. 2021. FAIR principles for research
software (FAIR4RS principles). Research Data Alliance 3(1):37-59 DOI 10.3233/DS-190026.

Clyburne-Sherin A, Fei X, Green SA. 2019. Computational reproducibility via containers in
psychology. Meta-Psychology 3:892 DOI 10.15626/MP.2018.892.

CoreTrustSeal. 2019. CoreTrustSeal trustworthy data repositories requirements 2020-2022.
Available at https://www.coretrustseal.org/why-certification/requirements/.

Dashnow H, Lonsdale A, Bourne PE. 2014. Ten simple rules for writing a PLOS ten simple rules
article. PLOS Computational Biology 10(10):1-5 DOI 10.1371/journal.pcbi.1003858.

Di Cosmo R, Zacchiroli S. 2017. Software heritage: why and how to preserve software source code.
In: iPRES 2017 - 14th International Conference on Digital Preservation. Kyoto, Japan, 1-10.
Directorate-General for Research and Innovation (European Commission). 2018. Turning FAIR
into reality: final report and action plan from the European Commission expert group on FAIR

data. Luxembourg: Publications Office of the European Union.

Du C, Cohoon J, Priem J, Piwowar H, Meyer C, Howison J. 2021. Citeas: better software through
sociotechnical change for better software citation. In: CSCW °21: Companion Publication of the
2021 Conference on Computer Supported Cooperative Work and Social Computing.

Editorial Staff. 2019. Giving software its due. Nature Methods 16(3):207
DOI 10.1038/s41592-019-0350-x.

Ensor N, Stooksbury S, Smith A, Johnson LA, Vowell L, Martin M, Hensley M, Finkbeiner D,
Robinson C, Knight K, Nelson J, Davis L, Lee I, Sherline C, Welsch T, Billings JJ, West MB,
Sowers T, Watson A. 2017. Doe code. Available at https://doi.org/10.11578/dc.20171031.3.

Fox P, Erdmann C, Stall S, Griffies SM, Beal LM, Pinardi N, Hanson B, Friedrichs MAM,
Feakins S, Bracco A, Pirenne B, Legg S. 2021. Data and Software Sharing Guidance for Authors
Submitting to AGU Journals. DOI 10.5281/zenodo.5124741.

Frank RD, Chen Z, Crawford E, Suzuka K, Yakel E. 2017. Trust in qualitative data repositories.
Proceedings of the Association for Information Science and Technology 54(1):102-111
DOI 10.1002/pra2.2017.14505401012.

Gentleman RC, Carey V], Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y,
Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M,
Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. 2004.
Bioconductor: open software development for computational biology and bioinformatics.
Genome Biology 5(10):1-16 DOI 10.1186/gb-2004-5-10-180.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 26/29

http://dx.doi.org/10.4230/DagMan.1.1.41
http://dx.doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.25495/7gxk-rd71
http://dx.doi.org/10.1038/s41567-018-0342-2
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.15626/MP.2018.892
https://www.coretrustseal.org/why-certification/requirements/
http://dx.doi.org/10.1371/journal.pcbi.1003858
http://dx.doi.org/10.1038/s41592-019-0350-x
https://doi.org/10.11578/dc.20171031.3
http://dx.doi.org/10.5281/zenodo.5124741
http://dx.doi.org/10.1002/pra2.2017.14505401012
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Gil Y, Garijo D, Mishra S, Ratnakar V. 2016. OntoSoft: a distributed semantic registry for
scientific software. In: 2016 IEEE 12th International Conference on e-Science (e-Science).
Piscataway: IEEE, 331-336.

Gil Y, Ratnakar V, Garijo D. 2015. OntoSoft: capturing scientific software metadata. In: K-CAP
2015: Proceedings of the 8th International Conference on Knowledge. ACM Press, 1-4.

Grethe JS, Bandrowski A, Banks DE, Condit C, Gupta A, Larson SD, Li Y, Ozyurt IB, Stagg AM,
Whetzel PL, Marenco L, Miller P, Wang R, Shepherd GM, Martone ME. 2014. SciCrunch: a
cooperative and collaborative data and resource discovery platform for scientific communities.
Neuroinformatics 8:¢€00069 DOI 10.3389/conf.fninf.2014.18.00069.

Greuel G-M, Sperber W. 2014. swMATH—an information service for mathematical software. In:
Hong H, Yap C, eds. Mathematical Software—ICMS 2014. Berlin, Heidelberg: Springer, 691-
701.

Grosbol P, Tody D. 2010. Making access to astronomical software more efficient. ArXiv preprint.
DOI 10.48550/arXiv.1004.4430.

Guha RV, Brickley D, Macbeth S. 2016. Schema.org: evolution of structured data on the web.
Communications of the ACM 59(2):44-51 DOI 10.1145/2844544.

Hettrick S. 2018. Software in research survey. Zenodo. Available at https://doi.org/10.5281/zenodo.
1183562.

Howison J, Herbsleb JD. 2011. Scientific software production: incentives and collaboration. In:
CSCW ’11: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work.
New York, NY, USA: Association for Computing Machinery, 513-522.

Hwang L, Kellogg LH. 2017. CIG community standards and best practices for scientific software
(Invited). SSA 2017 annual meeting announcement and program. Seismological Research Letters
88(2B):463-723 DOI 10.1785/0220170035.

Ince DC, Hatton L, Graham-Cumming J. 2012. The case for open computer programs. Nature
482(7386):485-488 DOI 10.1038/nature10836.

Ison J, Ienasescu H, Chmura P, Rydza E, Ménager H, Kala§ M, Schwimmle V, Griining B,
Beard N, Lopez R, Duvaud S, Stockinger H, Persson B, Varekova RS, Racek T, Vondrasek J,
Peterson H, Salumets A, Jonassen I, Hooft R, Nyronen T, Valencia A, Capella S, Gelpi J,
Zambelli F, Savakis B, Leskosek B, Rapacki K, Blanchet C, Jimenez R, Oliveira A, Vriend G,
Collin O, van Helden J, Lengreen P, Brunak S. 2019. The bio.tools registry of software tools
and data resources for the life sciences. Genome Biology 20(1):1-4
DOI 10.1186/s13059-019-1772-6.

Ison J, Ienasescu H, Rydza E, Chmura P, Rapacki K, Gaignard A, Schwimmle V, van Helden J,
Kalas M, Ménager H. 2021. biotoolsSchema: a formalized schema for bioinformatics software
description. GigaScience 10(1):giaal57 DOI 10.1093/gigascience/giaal57.

Janssen MA, Alessa LN, Barton M, Bergin S, Lee A. 2008. Towards a community framework for
agent-based modelling. Journal of Artificial Societies and Social Simulation 11(2):6.

Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B, Borg M, Capella-Gutierrez S, Chue
Hong N, Cook M, Corpas M, Flannery M, Garcia L, Gelpi JL, Gladman S, Goble C, Gonzalez
Ferreiro M, Gonzalez-Beltran A, Griffin PC, Griining B, Hagberg J, Holub P, Hooft R, Ison
J, Katz DS, Leskosek B, Lopez Gomez F, Oliveira L], Mellor D, Mosbergen R, Mulder N,
Perez-Riverol Y, Pergl R, Pichler H, Pope B, Sanz F, Schneider MV, Stodden V, Suchecki R,
Svobodova Varekova R, Talvik H-A, Todorov I, Treloar A, Tyagi S, van Gompel M, Vaughan
D, Via A, Wang X, Watson-Haigh NS, Crouch S. 2017. Four simple recommendations to
encourage best practices in research software. F1000Research 6:876
DOI 10.12688/f1000research.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 27/29

http://dx.doi.org/10.3389/conf.fninf.2014.18.00069
http://dx.doi.org/10.48550/arXiv.1004.4430
http://dx.doi.org/10.1145/2844544
https://doi.org/10.5281/zenodo.1183562
https://doi.org/10.5281/zenodo.1183562
http://dx.doi.org/10.1785/0220170035
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1186/s13059-019-1772-6
http://dx.doi.org/10.1093/gigascience/giaa157
http://dx.doi.org/10.12688/f1000research
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Jones MB, Boettiger C, Mayes AC, Slaughter P, Gil Y, Chue Hong N, Goble C. 2017. CodeMeta.
Available at https://github.com/codemeta/codemeta.

Katz DS, Gruenpeter M, Honeyman T. 2021. Taking a fresh look at FAIR for research software.
F1000Research 2(3):100222 DOI 10.1016/j.patter.2021.100222.

Katz DS, Niemeyer KE, Smith AM. 2018. Publish your software: introducing the journal of open
source software (JOSS). Computing in Science Engineering 20(3):84-88
DOI 10.1109/MCSE.2018.03221930.

Katz DS, Niemeyer KE, Smith AM, Anderson WL, Boettiger C, Hinsen K, Hooft R, Hucka M,
Lee A, Loffler F, Pollard T, Rios F. 2016. Software vs. data in the context of citation. Peer]
Preprints 4:e2630v1 DOI 10.7287/peerj.preprints.2630v1.

Kern F, Fehlmann T, Keller A. 2020. On the lifetime of bioinformatics web services. Nucleic Acids
Research 48(22):12523-12533 DOI 10.1093/nar/gkaal125.

Lamprecht A-L, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E, Dominguez Del
Angel V, van de Sandt S, Ison J, Martinez PA, McQuilton P, Valencia A, Harrow J,
Psomopoulos F, Gelpi JL, Chue Hong N, Goble C, Capella-Gutierrez S. 2020. Towards FAIR
principles for research software. Data Science 3(1):37-59 DOI 10.3233/DS-190026.

Lin D, Crabtree J, Dillo I, Downs RR, Edmunds R, Giaretta D, De Giusti M, L’Hours H, Hugo
W, Jenkyns R, Khodiyar V, Martone ME, Mokrane M, Navale V, Petters J, Sierman B,
Sokolova DV, Stockhause M, Westbrook J. 2020. The TRUST principles for digital
repositories. Scientific Data 7(1):144 DOI 10.1038/s41597-020-0486-7.

Merali Z. 2010. Computational science: ...error. Nature 467(7317):775-777
DOI 10.1038/467775a.

Ministére de ’Enseignement supérieur, de la Recherche et de I'Innovation. 2021. Second
national plan for open science. Available at https://www.ouvrirlascience.fr/second-national-plan-
for-open-science/.

Momcheva I, Tollerud E. 2015. Software use in astronomy: an informal survey. ArXiv preprint.
DOI 10.48550/arXiv.1507.03989.

Morin A, Urban J, Adams PD, Foster I, Sali A, Baker D, Sliz P. 2012. Shining light into black
boxes. Science 336(6078):159-160 DOI 10.1126/science.1218263.

Office of Science and Technology Policy. 2016. Principles for promoting access to federal
government-supported scientific data and research findings through international scientific
cooperation. Available at https://www.nesdisia.noaa.gov/docs/iwgodsp_principles_0.pdyf.

ORNL. 2013. Oak ridge national laboratory distributed active archive center. Available at https://
daac.ornl.gov/.

Peckham SD, Hutton EWH, Norris B. 2013. A component-based approach to integrated
modeling in the geosciences: the design of CSDMS. Computers and Geosciences 53(December
(4)):3-12 DOI 10.1016/j.cageo.2012.04.002.

Peng RD. 2011. Reproducible research in computational science. Science 334(6060):1226-1227
DOI 10.1126/science.1213847.

Serban A, van der Blom K, Hoos H, Visser J. 2020. Adoption and effects of software engineering
best practices in machine learning. In: ESEM °20: Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM)

New York: Association for Computing Machinery.

Smith AM, Katz DS, Niemeyer KE. 2016. Software citation principles. Peer] Computer Science

2(2):€86 DOI 10.7717/peerj-cs.86.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 28/29

https://github.com/codemeta/codemeta
http://dx.doi.org/10.1016/j.patter.2021.100222
http://dx.doi.org/10.1109/MCSE.2018.03221930
http://dx.doi.org/10.7287/peerj.preprints.2630v1
http://dx.doi.org/10.1093/nar/gkaa1125
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.1038/s41597-020-0486-7
http://dx.doi.org/10.1038/467775a
https://www.ouvrirlascience.fr/second-national-plan-for-open-science/
https://www.ouvrirlascience.fr/second-national-plan-for-open-science/
http://dx.doi.org/10.48550/arXiv.1507.03989
http://dx.doi.org/10.1126/science.1218263
https://www.nesdisia.noaa.gov/docs/iwgodsp_principles_0.pdf
https://daac.ornl.gov/
https://daac.ornl.gov/
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.7717/peerj-cs.1023
https://peerj.com/computer-science/

PeerJ Computer Science

Soito L, Hwang LJ. 2017. Citations for software: providing identification, access and recognition
for research software. International Journal of Digital Curation 11(2):48-63
DOI 10.2218/ijdc.v11i2.390.

Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, Heroux MA, Ioannidis JPA,
Taufer M. 2016. Enhancing reproducibility for computational methods. Science
354(6317):1240-1241 DOI 10.1126/science.aah6168.

Task Force on Best Practices for Software Registries, Monteil A, Gonzalez-Beltran A, Ioannidis
A, Allen A, Lee A, Bandrowski A, Wilson BE, Mecum B, Du CF, Robinson C, Garijo D, Katz
DS, Long D, Milliken G, Ménager H, Hausman J, Spaaks JH, Fenlon K, Vanderbilt K, Hwang
L, Davis L, Fenner M, Crusoe MR, Hucka M, Wu M, Chue Hong N, Teuben P, Stall S,
Druskat S, Carnevale T, Morrell T. 2020. Nine best practices for research software registries
and repositories: a concise guide. ArXiv preprint. DOI 10.48550/arXiv.2012.13117.

Thelwall M, Kousha K. 2016. Figshare: a universal repository for academic resource sharing?
Online Information Review 40(3):333-346 DOI 10.1108/OIR-06-2015-0190.

Trisovic A, Durbin P, Schlatter T, Durand G, Barbosa S, Brooke D, Crosas M. 2020. Advancing
computational reproducibility in the dataverse data repository platform. In: P-RECS ’20:
Proceedings of the 3rd International Workshop on Practical Reproducible Evaluation of Computer
Systems. 15-20.

Trisovic A, Lau MK, Pasquier T, Crosas M. 2022. A large-scale study on research code quality and
execution. Scientific Data 9(1):60 DOI 10.1038/s41597-022-01143-6.

Veretnik S, Fink JL, Bourne PE. 2008. Computational biology resources lack persistence and
usability. PLOS Computational Biology 4(7):e1000136 DOI 10.1371/journal.pcbi.1000136.

Weiner B, Blanton MR, Coil AL, Cooper MC, Davé R, Hogg DW, Holden BP, Jonsson P, Kassin
SA, Lotz JM, Moustakas J, Newman JA, Prochaska JX, Teuben PJ, Tremonti CA, Willmer
CNA. 2009. Astronomical software wants to be free: a manifesto. In: Astr02010: The Astronomy
and Astrophysics Decadal Survey. Vol. 2010. P61.

Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N,
Boiten J-W, da Silva SLB, Bourne PE, Bouwman J, Brookes A]J, Clark T, Crosas M, Dillo I,
Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble
C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone
ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A,
Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der L], van
Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B.
2016. The FAIR guiding principles for scientific data management and stewardship. Scientific
Data 3(1):160018 DOI 10.1038/sdata.2016.18.

Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, Haddock SHD, Huff KD,
Mitchell IM, Plumbley MD, Waugh B, White EP, Wilson P. 2014. Best practices for scientific
computing. PLOS Biology 12(1):e1001745 DOI 10.1371/journal.pbio.1001745.

Yakel E, Faniel IM, Kriesberg A, Yoon A. 2013. Trust in digital repositories. International Journal
of Digital Curation 8(1):143-156 DOI 10.2218/ijdc.v8il.251.

Garijo et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1023 29/29

http://dx.doi.org/10.2218/ijdc.v11i2.390
http://dx.doi.org/10.1126/science.aah6168
http://dx.doi.org/10.48550/arXiv.2012.13117
http://dx.doi.org/10.1108/OIR-06-2015-0190
http://dx.doi.org/10.1038/s41597-022-01143-6
http://dx.doi.org/10.1371/journal.pcbi.1000136
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.2218/ijdc.v8i1.251
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1023

Submitted 7 June 2022
Accepted 1 August 2022
Published 22 August 2022

Corresponding author
Lauren Cadwallader,
Icadwallader@plos.org

Academic editor
Bjorn Brembs

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peer;j.13933

© Copyright
2022 Cadwallader and Hrynaszkiewicz

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A survey of researchers’ code sharing and
code reuse practices, and assessment of
interactive notebook prototypes

Lauren Cadwallader and Iain Hrynaszkiewicz

Public Library of Science, Cambridge, United Kingdom

ABSTRACT

This research aimed to understand the needs and habits of researchers in relation to code
sharing and reuse; gather feedback on prototype code notebooks created by NeuroLibre;
and help determine strategies that publishers could use to increase code sharing. We
surveyed 188 researchers in computational biology. Respondents were asked about how
often and why they look at code, which methods of accessing code they find useful and
why, what aspects of code sharing are important to them, and how satisfied they are
with their ability to complete these tasks. Respondents were asked to look at a prototype
code notebook and give feedback on its features. Respondents were also asked how

much time they spent preparing code and if they would be willing to increase this to
use a code sharing tool, such as a notebook. As a reader of research articles the most
common reason (70%) for looking at code was to gain a better understanding of the
article. The most commonly encountered method for code sharing-linking articles to
a code repository—was also the most useful method of accessing code from the reader’s
perspective. As authors, the respondents were largely satisfied with their ability to carry
out tasks related to code sharing. The most important of these tasks were ensuring

that the code was running in the correct environment, and sharing code with good

documentation. The average researcher, according to our results, is unwilling to incur
additional costs (in time, effort or expenditure) that are currently needed to use code
sharing tools alongside a publication. We infer this means we need different models for
funding and producing interactive or executable research outputs if they are to reach a
large number of researchers. For the purpose of increasing the amount of code shared
by authors, PLOS Computational Biology is, as a result, focusing on policy rather than
tools.

Subjects Bioinformatics, Computational Biology, Science Policy, Computational Science

Keywords Open science, Publishing practices, Research code dissemination, Research code reuse,
Research code sharing, Survey results

INTRODUCTION

Code sharing requirements of journals and funders are increasing but are not as prevalent
as requirements for sharing other research outputs, such as research data. Software tools,
such as code notebooks, can facilitate code sharing in a way that reduces barriers to
computational reproducibility but are not necessarily cost (e.g., time) free to authors.
Some publishers have experimented with executable code and interactive features in their
articles. Policies can also be employed to increase the amount of code shared alongside

How to cite this article Cadwallader L, Hrynaszkiewicz 1. 2022. A survey of researchers’ code sharing and code reuse practices, and assess-
ment of interactive notebook prototypes. Peer] 10:e13933 http://doi.org/10.7717/peerj.13933

https://peerj.com
mailto:lcadwallader@plos.org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.13933
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.13933

Peer

published articles. Researchers working in fields such as computational biology generate
code for a large proportion of their studies (Hrynaszkiewicz, Harney ¢ Cadwallader, 2021a;
Hrynaszkiewicz, Harney ¢ Cadwallader, 2021b). Sharing code improves reproducibility,
especially when made available before publication (Ferndndez-Juricic, 2021). Lack of
source code—along with raw data, and protocols—has been described as the main barrier
to computational reproducibility of published research (Seibold et al., 2021). However,
technical and cultural barriers to computational reproducibility have been identified in the
literature (Samota ¢ Davey, 2021; Hrynaszkiewicz, Harney ¢ Cadwallader, 2021a; Van den
Eynden et al., 2016). These barriers include insufficient time, funds and skills to prepare
code for sharing. A desire to protect intellectual property (IP) is also reported as a common
or important barrier to code sharing.

Journals and publishers must understand and respond to these challenges in the
research communities they serve if they wish to support open, reproducible research, and
test and implement solutions. Introducing policies is an important way for journals to
increase awareness and adoption of research practices that are important to a particular
community, as demonstrated by the increase in research data sharing policies and practices
in the last decade (Hrynaszkiewicz, 2020). In 2021, PLOS Computational Biology introduced
a strengthened, mandatory code sharing policy in response to a desire of this community
to support reproducibility by increasing the availability of code associated with articles
published in the journal (Cadwallader et al., 2021). The introduction of this policy was
supported by the results of a survey of the computational biology community, which
demonstrated their support for a mandatory code sharing policy in PLOS Computational
Biology (Hrynaszkiewicz, Harney & Cadwallader, 2021a). The survey results also found that
code sharing and access are important to researchers, and that they are satisfied with their
ability to share their own code, but they are not satisfied with their ability to access other
researchers’ code. Following the Jobs To Be Done theory (Ulwick ¢ Osterwalder, 2016), this
finding implies that there may be opportunities for new solutions (which could be products,
policies, services or features) that support researchers in accessing other researchers’ code.

Numerous technical solutions (tools) exist that could play a role in improving code
availability, and reuse. Scholarly publishers and tool providers have experimented with
interactive and reproducible articles for years (Akhlaghi et al., 2021). Such tools inherently
require availability of code and data to enable interactivity with and reuse of results.
An example of this is the journal, eLife, and reproducible document platform, Stencila,
who have collaborated to experiment with publication of Executable Research Articles
(ERA; Tsang & Maciocci, 2020). Other tools that support code sharing and reuse alongside
scholarly articles include commercial platforms such as Code Ocean, which provides
executable code capsules; Gigantum, and NextJournal (Perkel, 2019) and collaborative,
interactive code notebooks such as Observable (Perkel, 2021). For a review of infrastructures
that support computational reproducibility see Konkol, Niist ¢~ Goulier (2020). Many code
notebook tools are built on open source technology, such as Jupyter and MyBinder,
and researcher-led efforts to produce code notebook type outputs often use these (Lasser,
2020). One relatively new code notebook initiative, NeuroLibre, supported by the Canadian
Open Neuroscience Platform, is an open access platform hosting notebooks derived from

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

published or preprinted research articles that can be freely modified and re-executed
(Boudreau et al., 2021).

The potential benefits of these tools—for researchers as readers and authors, for
publishers, and the accessibility of science—are numerous. Our focus was on how these
tools meet researcher needs for code sharing and reuse, as these needs align with PLOS’
goals to increase the adoption, and benefits, of open science. But the extent to which
these tools do meet these needs is unclear from the available literature. Furthermore,
the adoption of new tools or workflows for preparing and sharing code would incur
costs, in terms of time and effort, for researchers (as authors, readers, editors and peer
reviewers) and publishers. For new tools to be widely adopted it is important to understand
if additional effort required to adopt new tools is acceptable to their users. As a publisher
PLOS experiments with solutions that support open science in different communities,
and partners with community resources, such as data repositories and preprint servers,
to achieve this. To this end, rather than creating new solutions, PLOS partnered with
NeuroLibre to learn more about the value of their interactive code notebooks and research
publications to readers and authors. The results were anticipated to:

— Provide a deeper understanding of how researchers share and interact with code

— Inform PLOS Computational Biology’s plans for further supporting code sharing and
reuse, beyond its mandatory code sharing policy

— Inform development of NeuroLibre with quantifiable feedback from potential users of
the tool on the tool itself and researcher needs that are related to the features of the tool

— Provide PLOS, and other publishers, with quantitative insights on researchers’ attitudes
and experience with interactive article features, to inform future publishing innovation
approaches.

METHODS

We created a survey in English in Alchemer and distributed it in February and March 2021.
The survey had three main purposes:
(1) Understand how researchers interact with code as readers of articles
(2) Gather feedback on the prototype NeuroLibre notebook version of PLOS
Computational Biology articles
(3) Gain a more detailed understanding of researchers’ abilities to carry out code sharing
tasks, how they rate the importance of these tasks and how satisfied they are with their
ability to complete the tasks
The survey was promoted with an accompanying blog (Cadwallader, 2021) and email
campaign, which was sent to previous PLOS authors and other PLOS registered users
in computational biology related disciplines (n = 23,272). The survey (Cadwallader,
Hrynaszkiewicz & Harney, 2022) was launched with the blog on the 11th February 2021
and the email campaign followed on the 19th February. The results were exported from
Alchemer on 25th March 2021.
The survey methodology was adapted from our group’s previous recent work (described
in Hrynaszkiewicz, Harney ¢ Cadwallader, 2021b). Briefly, respondents were asked to

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

answer a series of questions from the perspective of both readers and authors of articles

with associated code. To identify if there were opportunities to support researchers with
sharing code using new solutions, we asked respondents to rate various code sharing and
reuse factors in terms of how important they were to them and how satisfied they were

with their ability to complete them. These responses were converted to numerical scores
and used to calculate opportunity scores for each factor using the following equation:

Opportunity score = Mean importance * (1 — mean satisfaction/100).

Opportunity scores above 25 indicate “better than neutral” or marginal opportunities and
scores above 36 we regard as good opportunities. This approach is more nuanced than
simply using quadrants and looking for high importance/low satisfaction scores.

In addition, NeuroLibre created two prototype interactive notebook versions (Larremiore,
2019; Tampuu et al., 2019) of articles published in PLOS Computational Biology (Larremore,
2019; Tampuu et al., 2019), so they could be shared with the community and their feedback
sought on the value and features of the interactive format. Survey respondents were asked
to give feedback on one of these prototypes.

Ethical considerations

Approval from a research ethics committee was not sought as we considered the research
to be low risk. Sensitive information about the participants was not collected and all data
were collected anonymously. Participants were informed that participation was voluntary,
and that they were free to withdraw at any time until they submitted their response. The

results were only analyzed in aggregate and answers were never associated with individual
participants. The data collection procedures and survey tool are compliant with the General
Data Protection Regulation 2016/679.

RESULTS

Respondent demographics

The survey received a total of 188 complete responses, with an additional 39 partial
responses (some but not all questions answered) and 175 incomplete responses (some but
not all demographic questions answered only). 79% of the respondents clicked through
from the email campaign link (n = 316), which had a 1.4% engagement (click) rate. This
analysis will focus on the 188 complete responses.

A range of disciplines are represented by the respondents, with a third of respondents
being from the computational biology field (Table 1). For those who chose ‘Other’, 13 out
of 14 respondents were in STEM fields, with math-related fields being most commonly
specified (n=6). One individual was from a social sciences discipline.

Responses are skewed more towards researchers with fewer publications, (Fig. 1).
Respondents were overwhelmingly from Europe (46%) or North America (40%), with
very few respondents indicating their location in other geographic regions (Table 2). 54%
of respondents had previously published in PLOS Computational Biology.

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

Table 1 Disciplinary distribution of respondents who completed the survey (n = 188).

Research field n % of Research field n % of

total total
Computational Biology 63 34% Engineering and Technology 9 5%
Biology and Life Sciences 34 18% Physical sciences 10 5%
Bioinformatics 32 17% Ecology and Environmental Sciences 5 3%
Medicine and Health Sciences 18 10% Social sciences 3 2%
Other (please specify) 14 7%

Approximately how many research papers have
you published?

40% 70

35%
£ 30%
<
S 25% 43
= 36
2 20%
2 25
%5 15%
X 10% 14

0%
0-5 6-20 21-50 51-100 100+

Number of papers

Figure 1 Distribution of respondents (n = 188) according to the number of previously published pa-
pers. The number of respondents in each category is given above the bar.
Full-size Eal DOI: 10.7717/peer;j.13933/fig-1

Table 2 Geographical distribution of respondents (n = 188).

Region n % of total
cohort

Europe 87 46%
North America 75 40%

Asia 12 6%

South America 7 4%
Australasia 4 2%

Africa 2 1%
Middle East 1 1%

When and why researchers access or read code

Respondents were asked to answer a set of questions from the viewpoint of a reader of
research articles that had associated code to understand how they interacted with code in
this setting. Three-quarters (n = 141) of the respondents look at code associated with a

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 5/22

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-1
http://dx.doi.org/10.7717/peerj.13933

Peer

How often do you look at code associated
with research articles?

0,

40% 67
35%
30%
25% 43
20% 35 31
15%
10% 12

0%

Never Rarely Occasionally Frequently Very
frequently

Figure 2 Frequency with which respondents look at code associated with research articles. The num-
ber of respondents is given above each bar.
Full-size Gl DOI: 10.7717/peerj.13933/fig-2

research paper at least occasionally, with 39% (n = 74) looking at code frequently or very

frequently. Only 6% (n = 12) said they never looked at the associated code (Fig. 2).

The degree to which readers from different disciplines look at code associated with
research articles is variable, although many of the cohorts included in the survey results
are small (Fig. 3). Of the largest cohorts surveyed, those in the Biology and Life Sciences
look at code associated with articles less frequently than in Computational Biology and
Bioinformatics. Lower levels of looking at code are also seen in the Medicine and Health
Sciences cohort although this is a smaller group (n=18).

Respondents were asked why they look at code associated with published articles. Free
text answers were provided by 178 respondents. Answers were categorised to identify
general trends, with the majority of respondents (n = 100) giving two or more reasons for
looking at the code.

e 125 (70%) respondents look at code to aid their understanding of the article. For
example, 113 respondents (63%) specified that they wish to directly verify the code
or examine its use in the context of the research presented and 38 respondents (21%)
look at the code to better understand the methods described in the article, e.g., what
parameters were selected.

e 86 (48%) respondents gave answers that fell into the ‘reuse’ category, e.g., directly reusing
the code (62 responses/35%) and reusing selected parts of the code (27 responses/15%).
Other reuse reasons were using the code as an example in teaching (one response), as
a comparison to the reader’s own code (six response/3%) and to reuse the data (one
response).

e Respondents also looked at the code to assess the quality of the research (37
respondents/21%), giving reasons such as to check for minimal standards (eight

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 6/22

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-2
http://dx.doi.org/10.7717/peerj.13933

Peer

How often do you look at code associated with research
articles?

Social sciences (n=3)
Physical sciences (n=10)
Other (n=14) I
Medicine and Health Sciences (n=18) GG
Engineering and Technology (n=9) |I—
Ecology and Environmental Sciences (n=5)
Computational Biology (n=63) I

Biology and Life Sciences (n=34) EEEEEN——"

Bioinformatics (n=32)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of cohort

® Never M Rarely Occasionally Frequently m Very frequently

Figure 3 Frequency at which authors look at code associated with research papers according to disci-
pline.
Full-size & DOI: 10.7717/peer;j.13933/fig-3

responses/4%), for trust or transparency reasons (five responses/3%) and replicate
the analysis using their own data (21 responses/12%).

e Reasons linked to discovery were also given by five respondents (3%), for example
finding new GitHub repositories of interest and looking for novel code.

The usefulness of methods for accessing or reading code

Respondents were asked how useful they found various methods of accessing code
associated with a research article, when considering the 6 months before they completed
the survey. Not all respondents had encountered the methods specified. Using a ‘Link to a
code repository’ was the most common method (encountered by 98%), followed by ‘link
to a website’ (88%) and ‘available on request’ (87%) (Fig. 4). A link to archived code,
that is, a snapshot of code deposited in a generalist repository was encountered by 72%
of respondents. Links to code notebooks were encountered by 66% and executable code
capsules by 40%. The methods were not defined for respondents, although they had been
asked to look at a prototype notebook before answering the questions.

‘Link to code repository’ was rated as the most useful method —both in terms of the
number of respondents who rated it ‘extremely’ or ‘very useful’, and the number who rated
it as ‘not at all useful’ (Fig. 5). Accessing code that is ‘available on request’ was rated as least
useful (based on number of ‘not at all useful’).

The five-point unipolar scale used in this question can be mapped to a value from 0 to
100, with 0 equalling ‘not at all useful’ and 100 equalling ‘extremely useful’. ‘I have not

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 7122

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-3
http://dx.doi.org/10.7717/peerj.13933

PeerJ

Rates at which different methods of code sharing
have been encountered

executable code capsule in research article
link to a code notebook

link to website (personal/group/lab)

link, e.g. DOI, to archived code

link to code repository (e.g. github or...

available on request
0% 20% 40% 60% 80% 100%

B % encountered M % not encountered

Figure 4 Rates that the various methods of code sharing have been encountered by the respondents.
Full-size Gl DOI: 10.7717/peer;j.13933/fig-4

In the last 6 months, how useful did you find the following
methods of accessing code? [excluding those who have not
encountered the method]

executable code capsule in research article

link to a code notebook

link to website (personal/group/lab)

link, e.g. DOI, to archived code

link to code repository (e.g. github or bitbucket)

available on request L]
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W Not at all useful ~ m Slightly useful ~ m Moderately useful Very useful W Extremely useful

Figure 5 The usefulness of different code sharing methods as percentages of the respondents who had
encountered each method.
Full-size] DOI: 10.7717/peer;j.13933/fig-5

encountered this method of sharing’ responses were not scored. Taking the mean rating
for all the methods (Fig. 6), the most commonly encountered method (link to a code
repository), is also the most useful (mean 84.1 & 3.2 (95% CI)). The mean scores given
were: code notebooks (69.9 = 5.3 (95% CI)); link to archived code (64.5 &= 4.4 (95% CI));
link to website (52.3 + 4.2 (95% CI)); and executable code capsules (50.8 + 8.9 (95%
CI)). The 95% confidence intervals for code capsules and link to a website (41.9-59.7
and 48.1-56.5 respectively) do not overlap those for code notebooks and archived code
(64.6-75.1 and 60.0-68.9 respectively).

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 8/22

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-4
https://doi.org/10.7717/peerj.13933/fig-5
http://dx.doi.org/10.7717/peerj.13933

Peer

1GitHub was the most highly named Mean usefulness of methods of code sharing
code repository in all areas of the survey.

Bitbucket had a small number of mentions ~ 100

by name.

80
2Zenodo was the most highly named

84.1
69.9
hi itory in all f th 6%>
archive repository in all areas of the survey. 573
OSF was also mentioned in this context. 60 , 50.8
40
20 15.4

0
available on link to code link to link to link to a code executable
request repository archived code website notebook code capsule
in research
article

Figure 6 Mean usefulness of different methods of code sharing. A score of zero equates to ‘not at all
useful’ and 100 equals ‘extremely useful’. The mean values are given above the bars. Error bars show the

95% confidence interval.
Full-size Gal DOI: 10.7717/peerj.13933/fig-6

The reasons why researchers favoured certain methods of accessing code were gathered
via a free text question. The most common reasons, which all received between 18 and 10

mentions, were (in order of number of mentions):

— Ability to see new versions of the code (most associated with code repositories')

— Quick to access the code (most associated with code repositories)

— The method allows exploration of the code, which aids understanding (most associated
with notebooks)

— The method is associated with good documentation/README files (most associated
with code repositories)

— The practicality of the method (most associated with code repositories)

— The method provides long term access to the code (most associated with archived
code?)

— The method allows for reproduction of results (most associated with code repositories
and notebooks)

— Tt is an established method (most associated with code repositories)

Features of code notebooks that are useful when accessing or
reading code

All respondents were then asked to rate the importance of various features of the NeuroLibre
prototype notebook (Larremore, 2019) using a 5-point unipolar scale, or selected that they
did not use the feature. Converting these responses to numerical scores on a scale of 0 to 100
and taking the mean (Table 3) gives us a sense of the features readers value the most. The
top two features—°‘having all the code, data and figures in one place’ and ‘knowing the code
is running in the right environment’—are not features unique to code notebooks. Features

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 9/22

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-6
http://dx.doi.org/10.7717/peerj.13933

Peer

Table 3 Mean importance scores given to each feature of the notebook. Table excludes those who an-
swered they did not use the feature or were not aware of its presence/absence. The higher the score, the
more important the feature is.

Mean stdev n
score
Having all the code, data and figures in one place 81.0 22.7 186
Knowing the code is running in the right environment 73.5 29.3 178
Ability to interact inline with the code in the browser 66.6 28.5 178
Ability to uncover the data point by hovering over the 65.8 25.3 184
points on the graph’
Ability to open up the code as a Jupyter notebook’ 64.9 30.5 173
Ability to zoom in/out on the figures’ 63.3 26.5 182
Ability to change the parameters of the figure 62.6 26.7 185
Having extra figures included that were not in the original 53.8 29.0 185
paper
Notes.

*Features marked were included in the NeuroLibre prototype.
"Features marked are present in the NeuroLibre prototype but were not working during the survey period.

related to the interactivity elements of the notebook, e.g., ability to change parameters of
the figures, had mean scores in the low to mid 60s. The lowest scoring feature was ‘having
extra figures included that were not in the original paper’.

Importance and satisfaction of factors associated with sharing code
from an author’s perspective

Importance and satisfaction responses were converted to numerical scores as described
in the Methods section. All factors scored above 50 for mean importance, with standard
deviations ranging between 20.6 and 33.3 (Table 4 and Fig. 7). ‘Ability to share my code
with good accompanying documentation’ received the highest mean importance score
(82.2, SD: 20.6) and was also fairly well satisfied (72.2 , SD: 23.2). All of the factors have a
mean satisfaction score above 50, although the standard deviations all range between 23.2
and 28.8. The lowest scoring factors are ‘Readers can easily run the code in the correct
environment’ (mean satisfaction score 55.4 , SD: 28.0) and ‘The data and code are in the
same place’ (mean satisfaction score 60.4 , SD: 28.8). These are both considered important
factors (means scores 76.1 , SD: 23.8 and 73.0 , SD: 28.0 respectively). These are the only
two factors that have an opportunity score above 25, although they are not above 36, and
therefore present only a marginal opportunity.

Time spent on preparing code as authors

The survey also asked questions about the amount of time authors spent preparing to
share their code. The majority of respondents spend more than one day preparing code
and this observation holds true when it is separated into cohorts based on the number of
papers published (Fig. 8). The researchers with the most papers (>50) are most likely to
take more than one week to prepare their code for sharing, whereas the most common
response for researchers with fewer papers (<50) was more than one day but less than one

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

week. This may be a reflection on the number of additional constraints on time felt by
more established, i.e., published, researchers, such as teaching or supervision of students.

Time authors are willing to spend improving their methods of
sharing code

Respondents were also asked how much extra time they would be willing to spend on
using a new tool to make the code easier to read and run. This question was chosen as our
preliminary interviews with researchers suggested that making code easier to run and read
for others was important for authors, which is supported by the satisfaction and importance
scores seen in this survey (Table 4 and Fig. 7). Answers were varied, with the top three
responses being ‘more than one day’ (36%), ‘a day’ (21%) and ‘a couple of hours’ (20%).
There does not appear to be a trend if the respondents are split into cohorts based on the
number of previous publications (Fig. 9). However, those who already spend more than
a day preparing their code are more likely to spend extra time on a new tool to improve
their code.

DISCUSSION

What do readers value and why?

The findings from this survey show the most prevalent reason for readers looking at code
was for verification or examination purposes, with 70% of respondents looking at the
code to aid their understanding of the article. In journals where word limits apply, the
reproducibility of the research can be compromised if methodological details—in this
case computational methods—are not fully detailed (Samota & Davey, 2021; Haddaway ¢
Verhoeven, 2015) and it is unsurprising, therefore, that researchers commonly look at code
to aid their understanding of the work. The number of respondents who wished to rerun
(rather than examine) the code for reproducibility reasons was lower (~16%), which has
also been observed in other studies (Peterson ¢ Panofsky, 2021).

The desire to look at the code rather than run it aligns well with the ranking of a code
repository, such as Github, as the most useful method for accessing code by readers (only
1% ranked it as not at all useful), as the presentation of code in these repositories lends
itself to exploration or examination but not to immediately rerunning or interacting with
code. This survey did not map participants’ workflows so they could be downloading
and running code locally, although this is not always easy or possible (Samota ¢ Davey,
2021). 98% of respondents had encountered code shared via code repositories and this
prevalence is perhaps a factor in its high usefulness scores as it is widely used by researchers
in computational disciplines. The high encounter rate combined with the high usefulness
scores indicates that generally readers are satisfied with the most common methods of code
sharing.

The survey results also show best practice for code sharing (depositing code in an archive
repository) has been encountered by 72% of our respondents. This is a higher percentage
than seen in our previous research on data sharing practices where 56% deposit data in a
repository. With both code and data, often researchers aren’t following what is considered

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

geeell19ad/L1 22701 100 ‘ri19ad ‘(2202) zoimanzseukiy pue Japejjempe)

cclel

Table 4 Mean satisfaction and importance scores for code sharing factors. Respondents were asked to rate the factors using a 7 and 5 point Likert scale respectively,
which have been converted into scores out of 100. The higher the score, the more important or satisfied the respondent is. The final factor in the table was only asked in

relation to importance.

Mean Standard n Mean Standard n Opportunity
Satisfaction deviation importance deviation score
Ability to share the code in my preferred form, e.g., as zip 68.6 26.3 165 60.7 28.3 182 19.1
file or executable code capsule
Ability to share the code in my preferred location/platform 74.0 23.3 176 68.7 29.1 187 17.9
Ability to share my code with good accompanying 72.2 23.2 178 82.2 20.6 187 22.8
documentation
Spend less time on the preparing my code for sharing, e.g., 67.1 243 177 62.5 31.6 188 20.6
cleaning code, writing documentation
Spend less time on uploading the code and documentation 75.9 23.7 179 56.5 33.3 188 13.6
to a repository
Depositing my code in a permanent archive 71.1 26.2 169 74.5 26.9 187 21.5
Readers can easily run the code in the correct environment 55.4 28.0 171 76.1 23.8 186 33.9
The data and code are in the same place 60.4 28.8 172 73.0 28.0 183 28.9
Curation checks are run on my code by a third party 58.9 29.4 176

rIead

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

100

® Readers can easily run the code in the correct
environment

® The data and code are in the same place

L] °® ® Ability to share the code in my preferred form, e.g.
as zip file or executable code capsule
@ Ability to share the code in my preferred
® location/platform
® Ability to share my code with good accompanying

50 90‘1\!“\“ documentation
= god of!

@ Depositing my code in a permanent archive

Importance

Spend less time on the preparing my code for

ov9°du“-‘w
al sharing, e.g. cleaning code, writing documentation

wardh®
@ Spend less time on uploading the code and
documentation to a repository

.50 100
Satisfaction

Figure7 Plot of mean satisfaction and importance scores for each factor related to being an author
of code. The blue shaded areas denote where factors have to plot in order to be considered marginal or
good opportunities using the Opportunity Score as outlined in the Methods section. Data for the figure
are given in Table 4.

Full-size Gl DOI: 10.7717/peerj.13933/fig-7

Approximately how much time did you spend in total
preparing and sharing the code associated with your last
publication?

45%
40%
35%
30%
25%
20%
15%
| |
5%
* g ol 1 miln Mo I
Less than an A couple of Half a day A day More than one More than one | didn't prepare
hour hours day week and share any
code

W O0-5 papers W 6-20 papers 21-50 papers 51-100 papers M 100+ papers

Figure 8 Amount of time spent preparing code for publication by number of published papers.
Full-size &l DOI: 10.7717/peer;j.13933/fig-8

to be best practice (using repositories) but are satisfied with their ability to share data, from
their perspective (Hrynaszkiewicz, Harney & Cadwallader, 2021D).

At the other end of the scale (discounting the “available on request” option which was
viewed very negatively), executable code capsules had the lowest mean usefulness score
of all the methods presented (50.8) whereas code notebooks scored higher (69.9). This is
interesting given that they have similar features and aims and raises the question: what are

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 13/22

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-7
https://doi.org/10.7717/peerj.13933/fig-8
http://dx.doi.org/10.7717/peerj.13933

Peer

How much extra time would you consider spending on using a
new tool to make your code easier to read and run?

60%
50%
40%

30%

20%
- I I II I

Less than an hour A couple of hours Half a day A day More than one day

W 0-5 papers W 6-20 papers 21-50 papers 51-100 papers M 100+ papers

Figure 9 Amount of time researchers are willing to spend using a new tool to make their code easier to
read and run, by number of published papers.
Full-size &l DOI: 10.7717/peer;j.13933/fig-9

notebooks doing better than code capsules, or what needs are they meeting that capsules
aren’t? Unfortunately, we cannot answer that question directly with our survey data.

The survey question on why readers favoured certain methods of access give some
insight into user needs when it comes to accessing code. Versioning, good documentation
and long term access are elements considered best practice for code sharing (Lamprecht et
al., 2020) and were all amongst the most common reasons given for preferred methods.
The other reasons relate to what readers wish to do with the code—explore the code and/or
reproduce the results in a quick and accessible manner—and are what these methods of
code sharing are good at facilitating.

Prototype notebook features

Respondents were asked to rank the importance of a range of features they may have
encountered in the prototype notebook, however, many of these features are not exclusive
to this notebook and can be found in other code sharing tools. Presenting the prototype
notebooks may have affected the respondents’ answers to the usefulness of the features,
however, given that a third of respondents had not encountered a notebook associated
with a research article in the last 6 months the prototype did offer some useful context to
those participants and gave all respondents a similar experience to guide their answers.
Readers scored ‘having all the code, data and figures in one place’—a feature also present
in tools such as code capsules—as the most important (mean score 81.0/100; see Table 3).
The usefulness of having code, data and figures in one place aligns with how information
is often presented in a published article: figures are together with the text, and the data
and code are shared (if they are shared) on a different, or multiple different, platforms

Cadwallader and Hrynaszkiewicz (2022), PeerJ, DOI 10.7717/peerj.13933 14/22

https://peerj.com
https://doi.org/10.7717/peerj.13933/fig-9
http://dx.doi.org/10.7717/peerj.13933

Peer

making the research outputs dispersed. This issue could be solved in a number of different
ways, either through technological solutions (such as notebooks, executable code capsules
or imbedded repository widgets on article pages), publishing practices (such as requiring
authors to share outputs in a certain way) or through changing researcher behaviour so
they share their research as a single package of text, figures, data and code regardless of any
mandates or policies they have to comply with or solutions offered by publishers.

The second highest scoring feature (mean score 73.5/100) was ‘knowing the code is
running in the right environment’. Samota ¢& Davey (2021) found that even researchers
trained in computational methods had regularly encountered technical barriers to
computational reproducibility. Containerisation—packaging the code and all the
components needed to run it correctly—is one solution to this problem. It is interesting that
this factor scores so high, yet so few respondents wish to run the code, or rated solutions,
such as notebooks and executable code capsules, highly for usefulness. Authors scored
their satisfaction with their ability to ensure readers are running their code in the correct
environment the lowest out of all factors we surveyed (mean 55.4, SD: 28.0). Although this
is the lowest score, it is still above 50 and so there is little opportunity to better support this
activity. It is not clear from our survey findings that offering a tool to assist with readers
running their code in the correct environment would meaningfully change the way readers
interact with code although perhaps the possibility of verifying reproducibility will increase
confidence in the results (Nosek et al., 2015).

The ability to interact with the code inline was ranked as the third most important
feature of the prototype code notebook, which supports readers’ desire to run, and possibly
modify, the code in the correct environment. Conversely, Samota & Davey (2021) found
a “link to the source code of interactive figures” the least valued feature out of the list in
the survey. While this may suggest that readers don’t wish to run the code, it may also
be an indication that readers don’t like having to access links to code (contrary to our
findings that researchers like accessing code via repositories). The interactive features, such
as zooming in on data points or changing parameters, had lower importance scores, in the
low to mid 60s, falling between the moderately important (50/100) and very important
(75/100) rating. No one feature of the notebook stands out as being the main reason why
respondents would look at a notebook like the one tested—those who scored the likelihood
of looking at the notebook highly, generally scored each of the features highly as well.

Other opportunities to support authors

Authors’ ability to share the code with good documentation had the highest mean
importance score (82.2, SD: 20.6) and a high satisfaction score (mean 72.2, SD:23.2) and
good documentation was commonly given as a reason by readers for their preferred method
of accessing data. In another survey of computational biology authors (Hrynaszkiewicz,
Harney ¢ Cadwallader, 2021a), we found that there was a disconnect between how satisfied
researchers are with their ability to share code well and the ability of others to share code.
That data suggest authors regard themselves as competent at this task but view the
competence of others less favourably. This is an area of interest that is worth future
exploration to understand if this perceived gap in skills is genuine.

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

Comparing policy to technology as solutions for increasing code
sharing

There is evidence from our survey and others (e.g., Perkel, 2017; Samota & Davey, 2021)
that researchers regard the ability to interact with code published in its complete software
environment as beneficial. Using containerisation tools, such as Docker, have been
recommended for increasing the reproducibility of research (Burton et al., 2020) but it
has also been acknowledged that this requires skills that not many researchers in this
field have (Kim, Poline ¢ Dumas, 2018). Platforms that utilise this technology have been
adopted or trialled by several publishers, for example Code Ocean has been deployed by
some Springer Nature journals, and some Taylor & Francis journals.

However, it has been acknowledged that authors already using GitHub and Zenodo
may feel that the creation of a code capsule is redundant (Cheifet, 2021). The trial of code
capsules at several Nature journals demonstrated that peer reviewers were verifying the
code and reproducing the results of the manuscripts they were assessing (Cheifet, 2021) but
it is unclear to what extent this was above the level of reviewer engagement seen before the
trial or what proportion of reviewers were engaging in this type of activity. Our survey was
focused on the needs of readers and authors rather than peer reviewers, but showed that
readers have mixed feelings about the usefulness of executable code capsules.

Samota & Davey (2021) state that top-down requirements from journals to release
reproducible data and code will in part rely on the availability of technical solutions
that are accessible and useful to most scientists. In one sense, these solutions are already
available in the form of code repositories, although we acknowledge this doesn’t enforce
reproducible code and data sharing because the code is not curated or reviewed. However,
technology is only one barrier and the journals that have implemented enhanced solutions
are, to our knowledge, yet to show that these are making a significant difference to the
quality or amount of code that is shared. Additionally, the added benefit, as opposed
to the perceived benefit, that they bring to authors and readers versus the use of other
methods of sharing, has not been demonstrated. On the other hand, simply sharing the
code underlying a publication in a repository has been shown to bring benefits to authors,
such as acting as a signal of credibility (McKiernan et al., 2016) and increased citations of
the article (Vandewalle, 2012), which has similarly been shown for data sharing (Piwowar,
Day & Fridsma, 2007; Colavizza et al., 2020).

Whilst quality and reusability of code is very important for increasing the reproducibility,
trust and transparency of research; the lack of shared code is still a huge issue that needs to
be overcome. Serghiou et al. (2021) found that 70% of publishers have never published an
article with shared code when analysing over 2.7 million articles in PubMed Central (PMC),
and only 2.5% of published articles share code. PLOS journals have higher code sharing
rates, with 41% of PLOS Computational Biology article sharing code in 2019 (Serghiou,
2021).

Additional time to prepare code for sharing
Additional effort is required to produce interactive and executable versions of published
research but our survey showed that even for those researchers already engaged in code

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

sharing, the majority (64%) would not be willing to spend more than a day using a tool
that makes code easier to read and run. This suggests that the average researcher may be
unwilling to incur additional costs (in time, effort or expenditure) themselves to achieve
these outputs, supporting a need for different models for funding and producing these
outputs—at least until such time as they can be produced more efficiently. Asking people
to predict their future behaviour can lead to overestimation of positive effects (Wood et al.,
2016) and therefore it is possible that the number of researchers unwilling to spend more
than a day on a new tool is actually higher than 64%. During the pilot at Nature journals,
the creation of a code capsule took a median time of nine days (Nature Biotechnology,
2019). Time has been found to be a barrier to sharing other research outputs, such as data,
in other studies as well (see, amongst others, Perrier, Blondal & MacDonald, 2020; Tenopir
et al., 2020; Digital Science et al., 2021)

Given the mixed feelings of researchers regarding features of interactive notebooks that
are not related to code access, and the lack of desire to invest the required effort to produce
them, PLOS Computational Biology has opted for the time being to focus on policy and
guidance rather than technological solutions to improve code sharing. The importance of
these cultural solutions is often underestimated in relation to reproducible code (Samnota
& Davey, 2021). At PLOS Computational Biology, we observed a high degree of voluntary
code sharing (Cadwallader et al., 2021) before implementation of a mandatory policy,
and preliminary results of the impact of the policy on the amount of code shared look
positive in line with what has been learnt from implementing mandatory versus optional
but encouraged data sharing policy, with the latter causing little change to the status quo
(Christensen et al., 2019; Colavizza et al., 2020; Statham et al., 2020). We are focusing on
supporting good foundational behaviours by authors that we know are important, such
as sharing code with good documentation and metadata (Kim, Poline ¢ Dumas, 2018;
Stodden et al., 2016). As more code associated with publications is made available as a
result of these activities, we anticipate there will be more opportunities to understand how
the quality, reusability, and interactivity of shared code affect reproducibility—and the role
of technological solutions.

Limitations

One possible limitation of this study is non-response bias. As no incentive was offered to
complete the survey, respondents who are already motivated to engage with code sharing
may have been more likely to participate. The survey was also directed at computational
biologists and related disciplines therefore may not be applicable to all disciplines. It is
also worth noting that only 34% of respondents identified as working specifically in the
computational biology field. Also, there is an uneven distribution in terms of the number
of published papers, with most respondents having published fewer than 20 papers, which
may limit the generalisability of the findings to other researchers at other career stages. The
geographical spread of our respondents also limits the generalisability of our findings. The
survey did not give explanations of the different methods of code sharing and assumed the
respondents to be familiar with terms such as “code capsule” and “archived in an open
access repository”.

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

CONCLUSIONS

The survey findings have given some valuable insights into researcher behaviour and
attitudes towards code sharing and more interactive, executable or reproducible publication
formats —which require much effort to create. We have observed a “negative result” with
regard to clear opportunities for implementing new features and services in the publishing
workflow, but we have a better understanding of why researchers look at code—this
predominantly seems to be to better understand the article and code used. This is an issue
that could be addressed with multiple potential solutions that we did not evaluate, such
as reporting guidelines for methods of relevant studies. Further, the results suggest that
researchers are on the whole satisfied with code being shared via a code repository, such
as GitHub, because this is a well used tool that gives the user freedom to use the code how
they wish (e.g., download, fork, read through). Good accompanying documentation is
important to researchers and whilst they think their ability to produce documentation is
good, the readers of their code may disagree.

Authors of code have variable practices when it comes to the amount of time they spend
preparing code. It is unclear if those spending minimal amounts of time preparing code
are doing so because their code is already well prepared for sharing, or because they do
not attach much importance to spending time preparing their code as it is not regarded
as necessary for career advancement, or because they do not have the time to spend on
preparation. The NeuroLibre interactive code notebook demonstrated that readers find
many of the features valuable and overall they are generally supportive of notebooks but
do not see them as revolutionary in the way code is shared. For publishers wishing to
experiment with or implement interactive features or versions of articles, it is important
to note that researchers (authors) are likely to need additional support or funding to be
incentivised to create these outputs. For publishers wishing to increase code sharing, policy
may be a more effective solution, in the computational biology community.

ACKNOWLEDGEMENTS

The authors thank James Harney, Gary Beardmore, Helen McDonald and Philip Mills
from PLOS for their contributions to the survey work. We also thank James Harney,
Marcel LaFlamme and Dan Morgan from PLOS and Professor Jason Papin, University of
Virginia and PLOS Computational Biology co-Editor-in-Chief, for comments on an earlier
version of this manuscript. We would also like to thank NeuroLibre for the creation of the
prototype notebooks and engaging in experimentation with us.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
Both authors are employees of Public Library of Science (PLOS).

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13933

Peer

Author Contributions

e Lauren Cadwallader conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Jain Hrynaszkiewicz conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The survey instrument used and anonymised survey data is available at Figshare:
Cadwallader, Lauren; Hrynaszkiewicz, lain; Harney, James (2022): Data from: A survey
of researchers’ code sharing and reuse practices, and assessment of interactive notebook
prototypes. figshare. Dataset. https:/doi.org/10.6084/m9.figshare.19122611.v1.

REFERENCES

Akhlaghi M, Infante-Sainz R, Roukema BF, Khellat M, Valls-Gabaud D, Baena-Gallé
R. 2021. Toward long-term and archivable reproducibility. Computing in Science ¢
Engineering 23:82-91 DOI 10.1109/MCSE.2021.3072860.

Boudreau M, Poline J-B, Bellec P, Stikov N. 2021. On the open-source landscape
of PLOS Computational Biology. PLOS Computational Biology 17:€1008725
DOI 10.1371/journal.pcbi.1008725.

Burton M, Lavin M]J, Otis J, Weingart SB. 2020. Digits: two reports on new units of
scholarly publication. The Journal of Electronic Publishing 22:1
DOI 10.3998/3336451.0022.105.

Cadwallader L. 2021. Exploring code notebooks through community focused collab-
oration. Available at https://theplosblog.plos.org/2021/02/exploring-code-notebooks-
through-community-focused-collaboration/ (accessed on 14 January 2022).

Cadwallader L, Hrynaszkiewicz I, Harney J. 2022. Data from: a survey of researchers’
code sharing and reuse practices and assessment of interactive notebook prototypes.
Figshare. Dataset DOI 10.6084/m9.figshare.19122611.

Cadwallader L, Papin JA, Mac Gabhann F, Kirk R. 2021. Collaborating with our
community to increase code sharing. PLOS Computational Biology 17:¢1008867
DOI 10.1371/journal.pcbi.1008867.

Cheifet B. 2021. Promoting reproducibility with Code Ocean. Genome Biology 22:65
DOI10.1186/s13059-021-02299-x.

Christensen G, Dafoe A, Miguel E, Moore DA, Rose AK. 2019. A study of the impact of
data sharing on article citations using journal policies as a natural experiment. PLOS
ONE 14:0225883 DOI 10.1371/journal.pone.0225883.

Colavizza G, Hrynaszkiewicz I, Staden I, Whitaker K, McGillivray B. 2020. The
citation advantage of linking publications to research data. PLOS ONE 15:€0230416
DOI 10.1371/journal.pone.0230416.

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 19/22

https://peerj.com
https://doi.org/10.6084/m9.figshare.19122611.v1
http://dx.doi.org/10.1109/MCSE.2021.3072860
http://dx.doi.org/10.1371/journal.pcbi.1008725
http://dx.doi.org/10.3998/3336451.0022.105
https://theplosblog.plos.org/2021/02/exploring-code-notebooks-through-community-focused-collaboration/
https://theplosblog.plos.org/2021/02/exploring-code-notebooks-through-community-focused-collaboration/
http://dx.doi.org/10.6084/m9.figshare.19122611
http://dx.doi.org/10.1371/journal.pcbi.1008867
http://dx.doi.org/10.1186/s13059-021-02299-x
http://dx.doi.org/10.1371/journal.pone.0225883
http://dx.doi.org/10.1371/journal.pone.0230416
http://dx.doi.org/10.7717/peerj.13933

Peer

Digital Science, Simons N, Goodey G, Hardeman M, Clare C, Gonzales S, Strange
D, Smith G, Kipnis D, Iida K, Miyairi N, Tshetsha V, Ramokgola R, Makhera P,
Barbour G. 2021. The State of Open Data 2021. Figshare
DOI 10.6084/m9.figshare.17061347.v1.

Fernandez-Juricic E. 2021. Why sharing data and code during peer review can
enhance behavioral ecology research. Behavioral Ecology and Sociobiology
75(103):500265-021-03036—x DOI 10.1007/500265-021-03036-x.

Haddaway NR, Verhoeven JTA. 2015. Poor methodological detail precludes experimen-
tal repeatability and hampers synthesis in ecology. Ecology and Evolution 5:4451
DOI 10.1002/ece3.1722.

Hrynaszkiewicz I. 2020. Publishers’ responsibilities in promoting data quality and
reproducibility. In: Bespalov A, Michel MC, Steckler T, eds. Good research practice in
non-clinical pharmacology and biomedicine. handbook of experimental pharmacology.
Cham: Springer International Publishing, 319-348 DOI 10.1007/164_2019_290.

Hrynaszkiewicz I, Harney J, Cadwallader L. 2021a. A survey of code sharing practice
and policy in computational biology. OSF Preprint DOI 10.31219/0st.i0/f73a6.

Hrynaszkiewicz I, Harney J, Cadwallader L. 2021b. A survey of researchers’ needs and
priorities for data sharing. Data Science Journal 20:31 DOI 10.5334/dsj-2021-031.

Kim Y-M, Poline J-B, Dumas G. 2018. Experimenting with reproducibility: a case study
of robustness in bioinformatics. GigaScience 7:giy077 DOI 10.1093/gigascience/giy077.

Konkol M, Niist D, Goulier L. 2020. Publishing computational research—a review of
infrastructures for reproducible and transparent scholarly communication. Research
Integrity and Peer Review 5:10 DOI 10.1186/s41073-020-00095-y.

Lamprecht A-L, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E,
Dominguez Del Angel V, vandeSandt S, Ison J, Martinez PA, McQuilton P,
Valencia A, Harrow J, Psomopoulos F, Gelpi JL, Chue Hong N, Goble C, Capella-
Gutierrez S. 2020. Towards FAIR principles for research software. Data Science
3:37-59 DOI 10.3233/DS-190026.

Larremore DB. 2019. Bayes-optimal estimation of overlap between populations of fixed
size. PLOS Computational Biology 15(3):1006898 DOI 10.1371/journal.pcbi.1006898.

Lasser J. 2020. Creating an executable paper is a journey through Open Science. Commu-
nications Physics 3:1-5 DOI 10.1038/s42005-020-00403-4.

McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, McDougall D,

Nosek BA, Ram K, Soderberg CK, Spies JR, Thaney K, Updegrove A, Woo KH,
Yarkoni T. 2016. How open science helps researchers succeed. eLife 5:e16800
DOI 10.7554/eLife.16800.

Nature Biotechnology. 2019. Changing coding culture. Nature Biotechnology
37:485—-485 DOI 10.1038/s41587-019-0136-9.

Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, Buck S,
Chambers CD, Chin G, Christensen G, Contestabile M, Dafoe A, Eich E, Freese J,
Glennerster R, Goroff D, Green DP, Hesse B, Humphreys M, Ishiyama J, Karlan
D, Kraut A, Lupia A, Mabry P, Madon T, Malhotra N, Mayo-Wilson E, McNutt
M, Miguel E, Paluck EL, Simonsohn U, Soderberg C, Spellman BA, Turitto J,

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 20/22

https://peerj.com
http://dx.doi.org/10.6084/m9.figshare.17061347.v1
http://dx.doi.org/10.1007/s00265-021-03036-x
http://dx.doi.org/10.1002/ece3.1722
http://dx.doi.org/10.1007/164_2019_290
http://dx.doi.org/10.31219/osf.io/f73a6
http://dx.doi.org/10.5334/dsj-2021-031
http://dx.doi.org/10.1093/gigascience/giy077
http://dx.doi.org/10.1186/s41073-020-00095-y
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.1371/journal.pcbi.1006898
http://dx.doi.org/10.1038/s42005-020-00403-4
http://dx.doi.org/10.7554/eLife.16800
http://dx.doi.org/10.1038/s41587-019-0136-9
http://dx.doi.org/10.7717/peerj.13933

Peer

VandenBos G, Vazire S, Wagenmakers EJ, Wilson R, Yarkoni T. 2015. Promoting
an open research culture. Science 348:1422—1425 DOI 10.1126/science.aab2374.

Perkel JM. 2017. TechBlog: interactive figures address data reproducibility. Naturejobs
Blog Available at http://blogs.nature.com/naturejobs/2017/10/20/techblog-interactive-
figures-address-data-reproducibility/ (accessed on 07 January 2022).

Perkel JM. 2019. Make code accessible with these cloud services. Nature 575:247-248
DOI10.1038/d41586-019-03366-x.

Perkel JM. 2021. Reactive, reproducible, collaborative: computational notebooks evolve.
Nature 593:156—157 DOI 10.1038/d41586-021-01174-w.

Perrier L, Blondal E, MacDonald H. 2020. The views, perspectives, and experiences of
academic researchers with data sharing and reuse: a meta-synthesis. PLOS ONE
15:0229182 DOI 10.1371/journal.pone.0229182.

Peterson D, Panofsky A. 2021. Self-correction in science: the diagnostic and integrative
motives for replication. Social Studies of Science 51:583-605
DOI10.1177/03063127211005551.

Piwowar HA, Day RS, Fridsma DB. 2007. Sharing detailed research data is associated
with increased citation rate. PLOS ONE 2:e308 DOI 10.1371/journal.pone.0000308.

Samota EK, Davey RP. 2021. Knowledge and attitudes among life scientists toward
reproducibility within journal articles: a research survey. Frontiers in Research Metrics
and Analytics 6:35 DOI 10.3389/frma.2021.678554.

Seibold H, Czerny S, Decke S, Dieterle R, Eder T, Fohr S, Hahn N, Hartmann R, Heindl
C, Kopper P, Lepke D, Loidl V, Mandl M, Musiol S, Peter J, Piehler A, Rojas
E, Schmid S, Schmidt H, Schmoll M, Schneider L, To X-Y, Tran V, Vélker A,
Wagner M, Wagner J, Waize M, Wecker H, Yang R, Zellner S, Nalenz M. 2021. A
computational reproducibility study of PLOS ONE articles featuring longitudinal
data analyses. PLOS ONE 16:¢0251194 DOI 10.1371/journal.pone.0251194.

Serghiou S. 2021. Assessment of transparency indicators across the biomedical literature:
how open is open? OSF Dataset DOI 10.17605/OSF.IO/E58W.

Serghiou S, Contopoulos-Ioannidis DG, Boyack KW, Riedel N, Wallach JD, Ioannidis
JPA. 2021. Assessment of transparency indicators across the biomedical literature:
How open is open? PLOS Biology 19:¢3001107 DOI 10.1371/journal.pbio.3001107.

Statham EE, White SA, Sonwane B, Bierer BE. 2020. Primed to comply: individual
participant data sharing statements on ClinicalTrials.gov. PLOS ONE 15:e0226143
DOI 10.1371/journal.pone.0226143.

Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, Heroux MA, Ioannidis
JPA, Taufer M. 2016. Enhancing reproducibility for computational methods. Science
354:1240-1241 DOI 10.1126/science.aah6168.

Tampuu A, Matiisen T, Olafsdéttir HF, Barry C, Vicente R. 2019. Efficient neural
decoding of self-location with a deep recurrent network. PLOS Computational
Biology 15(2):¢1006822 DOI 10.1371/journal.pcbi.1006822.

Tenopir C, Rice NM, Allard S, Baird L, Borycz J, Christian L, Grant B, Olendorf R, San-
dusky RJ. 2020. Data sharing, management, use, and reuse: practices and perceptions
of scientists worldwide. PLOS ONE 15:€0229003 DOI 10.1371/journal.pone.0229003.

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 21/22

https://peerj.com
http://dx.doi.org/10.1126/science.aab2374
http://blogs.nature.com/naturejobs/2017/10/20/techblog-interactive-figures-address-data-reproducibility/
http://blogs.nature.com/naturejobs/2017/10/20/techblog-interactive-figures-address-data-reproducibility/
http://dx.doi.org/10.1038/d41586-019-03366-x
http://dx.doi.org/10.1038/d41586-021-01174-w
http://dx.doi.org/10.1371/journal.pone.0229182
http://dx.doi.org/10.1177/03063127211005551
http://dx.doi.org/10.1371/journal.pone.0000308
http://dx.doi.org/10.3389/frma.2021.678554
http://dx.doi.org/10.1371/journal.pone.0251194
http://dx.doi.org/10.17605/OSF.IO/E58W
http://dx.doi.org/10.1371/journal.pbio.3001107
http://dx.doi.org/10.1371/journal.pone.0226143
http://dx.doi.org/10.1126/science.aah6168
http://dx.doi.org/10.1371/journal.pcbi.1006822
http://dx.doi.org/10.1371/journal.pone.0229003
http://dx.doi.org/10.7717/peerj.13933

Peer

Tsang E, Maciocci G. 2020. Welcome to a new ERA of reproducible publishing. Available
at https://elifesciences.org/labs/dc5acbde/welcome-to-a-new-era-of-reproducible-
publishing (accessed on 14 January 2022).

Ulwick AW, Osterwalder A. 2016. Jobs to be done: theory to practice. Houston: Idea Bite
Press.

Van den Eynden V, Knight G, Vlad A, Radler B, Tenopir C, Leon D, Manista F,
Whitworth J, Corti L. 2016. Survey of Wellcome researchers and their attitudes to
open research. 1843500 Bytes DOI 10.6084/M9.FIGSHARE.4055448.V 1.

Vandewalle P. 2012. Code sharing is associated with research impact in image process-
ing. Computing in Science Engineering 14:42—47 DOI 10.1109/MCSE.2012.63.

Wood C, Conner M, Miles E, Sandberg T, Taylor N, Godin G, Sheeran P. 2016.

The impact of asking intention or self-prediction questions on subsequent be-
havior: a meta-analysis. Personality and Social Psychology Review 20:245-268
DOI10.1177/1088868315592334.

Cadwallader and Hrynaszkiewicz (2022), PeerdJ, DOI 10.7717/peerj.13933 22/22

https://peerj.com
https://elifesciences.org/labs/dc5acbde/welcome-to-a-new-era-of-reproducible-publishing
https://elifesciences.org/labs/dc5acbde/welcome-to-a-new-era-of-reproducible-publishing
http://dx.doi.org/10.6084/M9.FIGSHARE.4055448.V1
http://dx.doi.org/10.1109/MCSE.2012.63
http://dx.doi.org/10.1177/1088868315592334
http://dx.doi.org/10.7717/peerj.13933

http://peerj.com/computer-science

